論文の概要: Unveiling the Role of Randomization in Multiclass Adversarial Classification: Insights from Graph Theory
- arxiv url: http://arxiv.org/abs/2503.14299v1
- Date: Tue, 18 Mar 2025 14:41:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:15:04.906410
- Title: Unveiling the Role of Randomization in Multiclass Adversarial Classification: Insights from Graph Theory
- Title(参考訳): 多クラス対数分類におけるランダム化の役割の解明:グラフ理論からの考察
- Authors: Lucas Gnecco-Heredia, Matteo Sammut, Muni Sreenivas Pydi, Rafael Pinot, Benjamin Negrevergne, Yann Chevaleyre,
- Abstract要約: マルチクラス分類における攻撃に対するロバスト性向上におけるランダム化の役割について検討する。
決定論的解からランダム化解への切り替えは、最適対逆リスクを著しく減少させる。
これらの知見は,マルチクラス分類における敵攻撃に対する頑健性を高める上で,ランダム化が重要な役割を担っていることを示唆している。
- 参考スコア(独自算出の注目度): 10.535721818998649
- License:
- Abstract: Randomization as a mean to improve the adversarial robustness of machine learning models has recently attracted significant attention. Unfortunately, much of the theoretical analysis so far has focused on binary classification, providing only limited insights into the more complex multiclass setting. In this paper, we take a step toward closing this gap by drawing inspiration from the field of graph theory. Our analysis focuses on discrete data distributions, allowing us to cast the adversarial risk minimization problems within the well-established framework of set packing problems. By doing so, we are able to identify three structural conditions on the support of the data distribution that are necessary for randomization to improve robustness. Furthermore, we are able to construct several data distributions where (contrarily to binary classification) switching from a deterministic to a randomized solution significantly reduces the optimal adversarial risk. These findings highlight the crucial role randomization can play in enhancing robustness to adversarial attacks in multiclass classification.
- Abstract(参考訳): 機械学習モデルの対向ロバスト性を改善する手段としてランダム化が最近注目されている。
残念なことに、これまでの理論分析の多くはバイナリ分類に重点を置いており、より複雑なマルチクラス設定に関する限られた洞察しか提供していない。
本稿では,グラフ理論の分野からインスピレーションを得て,このギャップを解消する。
本分析では, 離散的なデータ分布に着目し, 集合パッキング問題の枠組みにおいて, 対角的リスク最小化問題を最小化することができる。
これにより、ロバスト性を改善するためにランダム化に必要なデータ分布のサポートに関する3つの構造条件を特定できる。
さらに,決定論的解からランダム化解への切り換えによって,最適対向リスクが大幅に低減されるようなデータ分布の構築も可能である。
これらの知見は,マルチクラス分類における敵攻撃に対する頑健性を高める上で,ランダム化が重要な役割を担っていることを示唆している。
関連論文リスト
- Optimal Multi-Distribution Learning [88.3008613028333]
マルチディストリビューション学習は、$k$の異なるデータ分散における最悪のリスクを最小限に抑える共有モデルを学ぶことを目指している。
本稿では, (d+k)/varepsilon2の順に, サンプルの複雑さを伴って, ヴァレプシロン最適ランダム化仮説を導出するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-08T16:06:29Z) - Distributionally Robust Skeleton Learning of Discrete Bayesian Networks [9.46389554092506]
我々は、潜在的に破損したデータから一般的な離散ベイズネットワークの正確なスケルトンを学習する問題を考察する。
本稿では,有界ワッサーシュタイン距離(KL)における分布群に対する最も有害なリスクを,経験的分布へのKL分散を最適化することを提案する。
本稿では,提案手法が標準正規化回帰手法と密接に関連していることを示す。
論文 参考訳(メタデータ) (2023-11-10T15:33:19Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Decentralized Adversarial Training over Graphs [44.03711922549992]
近年、敵攻撃に対する機械学習モデルの脆弱性が注目されている。
マルチエージェントシステムのための分散逆数フレームワークを開発する。
論文 参考訳(メタデータ) (2023-03-23T15:05:16Z) - Agnostic Multi-Robust Learning Using ERM [19.313739782029185]
頑健な学習における根本的な問題は非対称性である: 学習者は指数関数的に多くの摂動の全てを正しく分類する必要がある。
これとは対照的に、攻撃者は1つの摂動を成功させる必要がある。
本稿では,新しいマルチグループ設定を導入し,新しいマルチロバスト学習問題を提案する。
論文 参考訳(メタデータ) (2023-03-15T21:30:14Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Beyond cross-entropy: learning highly separable feature distributions
for robust and accurate classification [22.806324361016863]
本稿では, 対角的ロバスト性を提供する, ディープロバストなマルチクラス分類器を訓練するための新しい手法を提案する。
提案手法に基づく潜在空間の正則化は,優れた分類精度が得られることを示す。
論文 参考訳(メタデータ) (2020-10-29T11:15:17Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
我々は、ロバストなイソペリメトリに関する確率論の最近のブレークスルーを含む、新しいツールを開発し、活用する。
この結果から,データの不均衡時に増加する標準精度とロバスト精度の基本的なトレードオフが明らかになった。
論文 参考訳(メタデータ) (2020-06-09T09:58:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。