Unifying Text Semantics and Graph Structures for Temporal Text-attributed Graphs with Large Language Models
- URL: http://arxiv.org/abs/2503.14411v1
- Date: Tue, 18 Mar 2025 16:50:10 GMT
- Title: Unifying Text Semantics and Graph Structures for Temporal Text-attributed Graphs with Large Language Models
- Authors: Siwei Zhang, Yun Xiong, Yateng Tang, Xi Chen, Zian Jia, Zehao Gu, Jiarong Xu, Jiawei Zhang,
- Abstract summary: Temporal graph neural networks (TGNNs) have shown remarkable performance in temporal graph modeling.<n>We present textbfCross, a novel framework that seamlessly extends existing TGNNs for TTAG modeling.
- Score: 19.710059031046377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal graph neural networks (TGNNs) have shown remarkable performance in temporal graph modeling. However, real-world temporal graphs often possess rich textual information, giving rise to temporal text-attributed graphs (TTAGs). Such combination of dynamic text semantics and evolving graph structures introduces heightened complexity. Existing TGNNs embed texts statically and rely heavily on encoding mechanisms that biasedly prioritize structural information, overlooking the temporal evolution of text semantics and the essential interplay between semantics and structures for synergistic reinforcement. To tackle these issues, we present \textbf{{Cross}}, a novel framework that seamlessly extends existing TGNNs for TTAG modeling. The key idea is to employ the advanced large language models (LLMs) to extract the dynamic semantics in text space and then generate expressive representations unifying both semantics and structures. Specifically, we propose a Temporal Semantics Extractor in the {Cross} framework, which empowers the LLM to offer the temporal semantic understanding of node's evolving contexts of textual neighborhoods, facilitating semantic dynamics. Subsequently, we introduce the Semantic-structural Co-encoder, which collaborates with the above Extractor for synthesizing illuminating representations by jointly considering both semantic and structural information while encouraging their mutual reinforcement. Extensive experimental results on four public datasets and one practical industrial dataset demonstrate {Cross}'s significant effectiveness and robustness.
Related papers
- Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex [0.16385815610837165]
BiGTex is a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units.
BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction.
arXiv Detail & Related papers (2025-04-16T20:25:11Z) - SAFT: Structure-aware Transformers for Textual Interaction Classification [15.022958096869734]
Textual interaction networks (TINs) are an omnipresent data structure used to model the interplay between users and items on e-commerce websites, social networks, etc.
We propose SAFT, a new architecture that integrates language- and graph-based modules for the effective fusion of textual and structural semantics in the representation learning of interactions.
arXiv Detail & Related papers (2025-04-07T09:19:12Z) - Improving vision-language alignment with graph spiking hybrid Networks [10.88584928028832]
This paper proposes a comprehensive visual semantic representation module, necessitating the utilization of panoptic segmentation to generate fine-grained semantic features.<n>We propose a novel Graph Spiking Hybrid Network (GSHN) that integrates the complementary advantages of Spiking Neural Networks (SNNs) and Graph Attention Networks (GATs) to encode visual semantic information.
arXiv Detail & Related papers (2025-01-31T11:55:17Z) - SE-GCL: An Event-Based Simple and Effective Graph Contrastive Learning for Text Representation [23.60337935010744]
We present an event-based, simple, and effective graph contrastive learning (SE-GCL) for text representation.<n> Precisely, we extract event blocks from text and construct internal relation graphs to represent inter-semantic interconnections.<n>In particular, we introduce the concept of an event skeleton for core representation semantics and simplify the typically complex data augmentation techniques.
arXiv Detail & Related papers (2024-12-16T10:53:24Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridge is a framework that bridges local and global perspectives by leveraging contextual textual information.
Our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.
arXiv Detail & Related papers (2024-06-18T13:35:25Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-decomposition) is a novel framework that decomposes the graph structure by analyzing raw text attributes.
Our framework significantly enhances node classification performance across various datasets, with improvements of up to 16% on the Wisconsin dataset.
arXiv Detail & Related papers (2024-05-28T20:54:47Z) - SemanticBoost: Elevating Motion Generation with Augmented Textual Cues [73.83255805408126]
Our framework comprises a Semantic Enhancement module and a Context-Attuned Motion Denoiser (CAMD)
The CAMD approach provides an all-encompassing solution for generating high-quality, semantically consistent motion sequences.
Our experimental results demonstrate that SemanticBoost, as a diffusion-based method, outperforms auto-regressive-based techniques.
arXiv Detail & Related papers (2023-10-31T09:58:11Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
We consider the task of conversational semantic parsing over general purpose knowledge graphs (KGs) with millions of entities, and thousands of relation-types.
We focus on models which are capable of interactively mapping user utterances into executable logical forms.
arXiv Detail & Related papers (2023-05-04T16:04:41Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
Temporal grounding is the task of locating a specific segment from an untrimmed video according to a query sentence.
We introduce a new Compositional Temporal Grounding task and construct two new dataset splits.
We argue that the inherent structured semantics inside the videos and language is the crucial factor to achieve compositional generalization.
arXiv Detail & Related papers (2023-01-22T08:02:23Z) - TeKo: Text-Rich Graph Neural Networks with External Knowledge [75.91477450060808]
We propose a novel text-rich graph neural network with external knowledge (TeKo)
We first present a flexible heterogeneous semantic network that incorporates high-quality entities.
We then introduce two types of external knowledge, that is, structured triplets and unstructured entity description.
arXiv Detail & Related papers (2022-06-15T02:33:10Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.