SAFT: Structure-aware Transformers for Textual Interaction Classification
- URL: http://arxiv.org/abs/2504.04861v1
- Date: Mon, 07 Apr 2025 09:19:12 GMT
- Title: SAFT: Structure-aware Transformers for Textual Interaction Classification
- Authors: Hongtao Wang, Renchi Yang, Hewen Wang, Haoran Zheng, Jianliang Xu,
- Abstract summary: Textual interaction networks (TINs) are an omnipresent data structure used to model the interplay between users and items on e-commerce websites, social networks, etc.<n>We propose SAFT, a new architecture that integrates language- and graph-based modules for the effective fusion of textual and structural semantics in the representation learning of interactions.
- Score: 15.022958096869734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Textual interaction networks (TINs) are an omnipresent data structure used to model the interplay between users and items on e-commerce websites, social networks, etc., where each interaction is associated with a text description. Classifying such textual interactions (TIC) finds extensive use in detecting spam reviews in e-commerce, fraudulent transactions in finance, and so on. Existing TIC solutions either (i) fail to capture the rich text semantics due to the use of context-free text embeddings, and/or (ii) disregard the bipartite structure and node heterogeneity of TINs, leading to compromised TIC performance. In this work, we propose SAFT, a new architecture that integrates language- and graph-based modules for the effective fusion of textual and structural semantics in the representation learning of interactions. In particular, line graph attention (LGA)/gated attention units (GAUs) and pretrained language models (PLMs) are capitalized on to model the interaction-level and token-level signals, which are further coupled via the proxy token in an iterative and contextualized fashion. Additionally, an efficient and theoretically-grounded approach is developed to encode the local and global topology information pertaining to interactions into structural embeddings. The resulting embeddings not only inject the structural features underlying TINs into the textual interaction encoding but also facilitate the design of graph sampling strategies. Extensive empirical evaluations on multiple real TIN datasets demonstrate the superiority of SAFT over the state-of-the-art baselines in TIC accuracy.
Related papers
- Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex [0.16385815610837165]
BiGTex is a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units.
BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction.
arXiv Detail & Related papers (2025-04-16T20:25:11Z) - Unifying Text Semantics and Graph Structures for Temporal Text-attributed Graphs with Large Language Models [19.710059031046377]
Temporal graph neural networks (TGNNs) have shown remarkable performance in temporal graph modeling.<n>We present textbfCross, a novel framework that seamlessly extends existing TGNNs for TTAG modeling.
arXiv Detail & Related papers (2025-03-18T16:50:10Z) - Effective Context Modeling Framework for Emotion Recognition in Conversations [2.7175580940471913]
Emotion Recognition in Conversations (ERC) facilitates a deeper understanding of the emotions conveyed by speakers in each utterance within a conversation.<n>Recent Graph Neural Networks (GNNs) have demonstrated their strengths in capturing data relationships.<n>We propose ConxGNN, a novel GNN-based framework designed to capture contextual information in conversations.
arXiv Detail & Related papers (2024-12-21T02:22:06Z) - SE-GCL: An Event-Based Simple and Effective Graph Contrastive Learning for Text Representation [23.60337935010744]
We present an event-based, simple, and effective graph contrastive learning (SE-GCL) for text representation.<n> Precisely, we extract event blocks from text and construct internal relation graphs to represent inter-semantic interconnections.<n>In particular, we introduce the concept of an event skeleton for core representation semantics and simplify the typically complex data augmentation techniques.
arXiv Detail & Related papers (2024-12-16T10:53:24Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridge is a framework that bridges local and global perspectives by leveraging contextual textual information.
Our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.
arXiv Detail & Related papers (2024-06-18T13:35:25Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-decomposition) is a novel framework that decomposes the graph structure by analyzing raw text attributes.
Our framework significantly enhances node classification performance across various datasets, with improvements of up to 16% on the Wisconsin dataset.
arXiv Detail & Related papers (2024-05-28T20:54:47Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
Click-through rate (CTR) prediction plays as a core function module in personalized online services.
Traditional ID-based models for CTR prediction take as inputs the one-hot encoded ID features of tabular modality.
Pretrained Language Models(PLMs) has given rise to another paradigm, which takes as inputs the sentences of textual modality.
We propose to conduct Fine-grained feature-level ALignment between ID-based Models and Pretrained Language Models(FLIP) for CTR prediction.
arXiv Detail & Related papers (2023-10-30T11:25:03Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Semantic Interactive Learning for Text Classification: A Constructive
Approach for Contextual Interactions [0.0]
We propose a novel interaction framework called Semantic Interactive Learning for the text domain.
We frame the problem of incorporating constructive and contextual feedback into the learner as a task to find an architecture that enables more semantic alignment between humans and machines.
We introduce a technique called SemanticPush that is effective for translating conceptual corrections of humans to non-extrapolating training examples.
arXiv Detail & Related papers (2022-09-07T08:13:45Z) - TeKo: Text-Rich Graph Neural Networks with External Knowledge [75.91477450060808]
We propose a novel text-rich graph neural network with external knowledge (TeKo)
We first present a flexible heterogeneous semantic network that incorporates high-quality entities.
We then introduce two types of external knowledge, that is, structured triplets and unstructured entity description.
arXiv Detail & Related papers (2022-06-15T02:33:10Z) - Referring Image Segmentation via Cross-Modal Progressive Comprehension [94.70482302324704]
Referring image segmentation aims at segmenting the foreground masks of the entities that can well match the description given in the natural language expression.
Previous approaches tackle this problem using implicit feature interaction and fusion between visual and linguistic modalities.
We propose a Cross-Modal Progressive (CMPC) module and a Text-Guided Feature Exchange (TGFE) module to effectively address the challenging task.
arXiv Detail & Related papers (2020-10-01T16:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.