論文の概要: Doubly robust identification of treatment effects from multiple environments
- arxiv url: http://arxiv.org/abs/2503.14459v1
- Date: Tue, 18 Mar 2025 17:33:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:17:08.187840
- Title: Doubly robust identification of treatment effects from multiple environments
- Title(参考訳): 複数の環境における治療効果の二重頑健な同定
- Authors: Piersilvio De Bartolomeis, Julia Kostin, Javier Abad, Yixin Wang, Fanny Yang,
- Abstract要約: 本稿では,基礎となる因果グラフの知識や学習を必要とせずに,不偏処理効果推定を行うアルゴリズムであるRAMENを提案する。
RAMENは二重の堅牢な識別を実現し、治療の因果親や結果の因果親が観察されるたびに、治療効果を識別することができる。
- 参考スコア(独自算出の注目度): 22.228179404621482
- License:
- Abstract: Practical and ethical constraints often require the use of observational data for causal inference, particularly in medicine and social sciences. Yet, observational datasets are prone to confounding, potentially compromising the validity of causal conclusions. While it is possible to correct for biases if the underlying causal graph is known, this is rarely a feasible ask in practical scenarios. A common strategy is to adjust for all available covariates, yet this approach can yield biased treatment effect estimates, especially when post-treatment or unobserved variables are present. We propose RAMEN, an algorithm that produces unbiased treatment effect estimates by leveraging the heterogeneity of multiple data sources without the need to know or learn the underlying causal graph. Notably, RAMEN achieves doubly robust identification: it can identify the treatment effect whenever the causal parents of the treatment or those of the outcome are observed, and the node whose parents are observed satisfies an invariance assumption. Empirical evaluations on synthetic and real-world datasets show that our approach outperforms existing methods.
- Abstract(参考訳): 実践的かつ倫理的な制約は、特に医学や社会科学において、因果推論のための観察データの使用を必要とすることが多い。
しかし、観測データセットは混乱しがちであり、因果結論の妥当性を損なう可能性がある。
基礎となる因果グラフが知られている場合、バイアスを補正することは可能であるが、実際的なシナリオでは、これは実現不可能な要求である。
一般的な戦略は、利用可能なすべての共変量を調整することであるが、このアプローチは、特に後処理や未観測変数が存在する場合、偏りのある処理効果の推定値を得ることができる。
基礎となる因果グラフの知識や学習を必要とせず、複数のデータソースの不均一性を生かして非バイアス処理効果推定を行うアルゴリズムであるRAMENを提案する。
特に、RAMENは、治療の因果親または結果の因果親が観察されるたびに治療効果を識別でき、両親が観察されるノードは、不均一な仮定を満たす。
合成および実世界のデータセットに関する実証的な評価は、我々のアプローチが既存の手法より優れていることを示している。
関連論文リスト
- Identification of Single-Treatment Effects in Factorial Experiments [0.0]
実験において複数の介入がランダム化されている場合、実験環境外において単一の介入が与える影響は、不在の英雄的仮定とは見なされないことを示す。
観測研究と要因実験は、ゼロおよび複数介入による潜在的アウトカム分布に関する情報を提供する。
この種の設計に頼っている研究者は、関数形式の線形性を正当化するか、あるいはDirected Acyclic Graphsで変数が実世界でどのように関連しているかを特定する必要がある。
論文 参考訳(メタデータ) (2024-05-16T04:01:53Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
我々は、複数の、偏見のある、観察的、介入的な研究からのデータを統合するという問題に対処する。
利用可能なデータの可能性は局所的な最大値を持たないことを示す。
次に、同じアプローチが複数のデータセットの一般的なケースにどのように対処できるかを示す。
論文 参考訳(メタデータ) (2023-07-31T11:28:24Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
個体群における因果関係は、しばしば観測データを用いて推定される。
本稿では,偏りのある観測推定を拒否するメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-27T21:47:23Z) - Partial Identification of Dose Responses with Hidden Confounders [25.468473751289036]
観測データから連続的に評価された治療の因果効果を推定することが重要な課題である。
本稿では, 平均および条件付き平均連続値処理効果推定値の両方を束縛する新しい手法を提案する。
本手法を実世界の観測ケーススタディに適用し,線量依存因果効果の同定の価値を実証する。
論文 参考訳(メタデータ) (2022-04-24T07:02:21Z) - Combining Observational and Randomized Data for Estimating Heterogeneous
Treatment Effects [82.20189909620899]
不均一な治療効果を推定することは、多くの領域において重要な問題である。
現在、現存するほとんどの作品は観測データにのみ依存している。
本稿では、大量の観測データと少量のランダム化データを組み合わせることで、不均一な処理効果を推定する。
論文 参考訳(メタデータ) (2022-02-25T18:59:54Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
平均的な治療効果は社会福祉の変化を測定するため、たとえ肯定的であっても、人口の約10%に悪影響を及ぼすリスクがある。
本稿では,ICT分布のリスク条件値(CVaR)として定式化されたこの重要なリスク尺度をどう評価するかを検討する。
いくつかの境界は、複素CATE関数を単一の計量に要約したものと解釈することもでき、有界であることとは無関係に興味を持つ。
論文 参考訳(メタデータ) (2022-01-15T17:21:26Z) - Causes of Effects: Learning individual responses from population data [23.593582720307207]
個別化の問題とその医学への応用について研究する。
例えば、治療の恩恵を受ける確率は、治療された場合の好ましくない結果と、治療されていない場合の好ましくない結果である。
必要十分度(PNS)の確率に限界を当て、グラフィカルな基準や実用的応用とともに既存の研究を分析・拡大します。
論文 参考訳(メタデータ) (2021-04-28T12:38:11Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Estimating Treatment Effects using Multiple Surrogates: The Role of the Surrogate Score and the Surrogate Index [4.154846138501937]
治療の長期的な効果を見積もるのは、多くの分野において興味深いことである。
一つのアプローチは、しばしば統計代理と呼ばれる中間結果に対する治療効果を分析することである。
論文 参考訳(メタデータ) (2016-03-30T19:45:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。