論文の概要: Identification of Single-Treatment Effects in Factorial Experiments
- arxiv url: http://arxiv.org/abs/2405.09797v2
- Date: Sat, 18 May 2024 19:53:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 12:15:54.774256
- Title: Identification of Single-Treatment Effects in Factorial Experiments
- Title(参考訳): 因子実験における単軸効果の同定
- Authors: Guilherme Duarte,
- Abstract要約: 実験において複数の介入がランダム化されている場合、実験環境外において単一の介入が与える影響は、不在の英雄的仮定とは見なされないことを示す。
観測研究と要因実験は、ゼロおよび複数介入による潜在的アウトカム分布に関する情報を提供する。
この種の設計に頼っている研究者は、関数形式の線形性を正当化するか、あるいはDirected Acyclic Graphsで変数が実世界でどのように関連しているかを特定する必要がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite their cost, randomized controlled trials (RCTs) are widely regarded as gold-standard evidence in disciplines ranging from social science to medicine. In recent decades, researchers have increasingly sought to reduce the resource burden of repeated RCTs with factorial designs that simultaneously test multiple hypotheses, e.g. experiments that evaluate the effects of many medications or products simultaneously. Here I show that when multiple interventions are randomized in experiments, the effect any single intervention would have outside the experimental setting is not identified absent heroic assumptions, even if otherwise perfectly realistic conditions are achieved. This happens because single-treatment effects involve a counterfactual world with a single focal intervention, allowing other variables to take their natural values (which may be confounded or modified by the focal intervention). In contrast, observational studies and factorial experiments provide information about potential-outcome distributions with zero and multiple interventions, respectively. In this paper, I formalize sufficient conditions for the identifiability of those isolated quantities. I show that researchers who rely on this type of design have to justify either linearity of functional forms or -- in the nonparametric case -- specify with Directed Acyclic Graphs how variables are related in the real world. Finally, I develop nonparametric sharp bounds -- i.e., maximally informative best-/worst-case estimates consistent with limited RCT data -- that show when extrapolations about effect signs are empirically justified. These new results are illustrated with simulated data.
- Abstract(参考訳): その費用にもかかわらず、ランダム化比較試験(RCT)は、社会科学から医学まで幅広い分野において、ゴールドスタンダードの証拠として広く見なされている。
近年、多くの医薬品や製品の効果を同時に評価する実験など、複数の仮説を同時にテストする因子的設計による繰り返しRTTの資源負担を減らそうとする研究が増えている。
ここでは、実験において複数の介入がランダム化されている場合、実験環境外において単一の介入が与える効果は、たとえ完全に現実的な条件が達成されたとしても、非英雄的な仮定を特定できないことを示す。
これは、単一処理効果が単一の焦点介入を伴う反現実の世界を巻き込み、他の変数が自然の値を取ることを可能にするためである(これは焦点介入によって構築または修正されることもある)。
対照的に、観測的研究と因子的実験は、それぞれゼロと多重の介入を伴う潜在的なアウトカム分布に関する情報を提供する。
本稿では,これらの孤立量の同定に十分な条件を定式化する。
この種の設計を頼りにしている研究者は、関数形式の線型性、あるいは非パラメトリックな場合において、実際にどのように変数が関連しているかをDirected Acyclic Graphsで指定する必要があることを示します。
最後に、エフェクトサインに関する外挿が実験的に正当化されたときを示す非パラメトリックなシャープ境界、すなわち、制限されたRCTデータと一致する最大情報的ベスト/ウォーストケース推定を開発する。
これらの新しい結果はシミュレーションデータで示される。
関連論文リスト
- Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data [6.166869525631879]
本稿では,連続治療の因果効果を推定するための新しいフレームワークであるContiVAEについて述べる。
ContiVAEは既存の手法を最大62%上回り、その堅牢性と柔軟性を示す。
論文 参考訳(メタデータ) (2024-10-21T07:24:26Z) - Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
科学的研究はしばしば、システム内の高レベル変数の根底にある因果構造を理解しようとする。
科学者は通常、地理的に分布した温度測定などの低レベルの測定を収集する。
そこで本研究では,単一親の復号化による因果発見法を提案し,その上で下位の潜伏者と因果グラフを同時に学習する。
論文 参考訳(メタデータ) (2024-10-09T15:57:50Z) - Simultaneous inference for generalized linear models with unmeasured confounders [0.0]
本稿では,構造を利用して線形射影を3つの重要な段階に統合する,統一的な統計的推定と推測の枠組みを提案する。
サンプルおよび応答サイズとして$z$-testsの効果的なType-Iエラー制御が無限大に近づくことを示す。
論文 参考訳(メタデータ) (2023-09-13T18:53:11Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Falsification of Internal and External Validity in Observational Studies
via Conditional Moment Restrictions [6.9347431938654465]
RCTと観察研究の両方からのデータから、内部および外部の妥当性に関する仮定は、観測可能で検証可能な意味を持つ。
これらのCMRを因果効果、つまり「因果コントラスト」で表現することは、個別の反事実的手段とは対照的に、より信頼性の高いファルシフィケーションテストを提供することを示す。
論文 参考訳(メタデータ) (2023-01-30T18:16:16Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDIは因果構造と介入の両方の潜在確率的表現の連続的な空間で機能する。
BaCaDIは、合成因果発見タスクとシミュレートされた遺伝子発現データの実験において、因果構造と介入ターゲットを識別する関連手法より優れている。
論文 参考訳(メタデータ) (2022-06-03T16:25:48Z) - What can the millions of random treatments in nonexperimental data
reveal about causes? [0.0]
この記事ではこのようなモデルとベイズ的アプローチを紹介し、非経験的データで典型的に使用可能な 1(n2)$ のペアワイズ観測を組み合わせる。
提案手法は, 一般のnswサンプル, 任意のサブポピュレーションおよび大容量スーパーサンプルにおいて, 因果効果を回復することを示す。
論文 参考訳(メタデータ) (2021-05-03T20:13:34Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Active Invariant Causal Prediction: Experiment Selection through
Stability [4.56877715768796]
本研究では、不変因果予測(ICP)に基づく新しい能動学習(実験選択)フレームワーク(A-ICP)を提案する。
一般的な構造因果モデルでは、いわゆる安定集合に対する介入の効果を特徴づける。
本稿では,A-ICPの介入選択ポリシーを提案し,因果グラフにおける応答変数の直接原因を素早く明らかにする。
実験により, 人口および有限登録実験において提案した政策の有効性を実証的に分析した。
論文 参考訳(メタデータ) (2020-06-10T07:07:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。