Optimized 3D Gaussian Splatting using Coarse-to-Fine Image Frequency Modulation
- URL: http://arxiv.org/abs/2503.14475v1
- Date: Tue, 18 Mar 2025 17:49:01 GMT
- Title: Optimized 3D Gaussian Splatting using Coarse-to-Fine Image Frequency Modulation
- Authors: Umar Farooq, Jean-Yves Guillemaut, Adrian Hilton, Marco Volino,
- Abstract summary: We propose Opti3DGS, a novel frequency-modulated coarse-to-fine optimization framework.<n>We show that our method integrates seamlessly with many 3DGS-based techniques.<n>We also show that Opti3DGS inherently produces a level-of-detail scene representation at no extra cost.
- Score: 24.29691274119593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of Novel View Synthesis has been revolutionized by 3D Gaussian Splatting (3DGS), which enables high-quality scene reconstruction that can be rendered in real-time. 3DGS-based techniques typically suffer from high GPU memory and disk storage requirements which limits their practical application on consumer-grade devices. We propose Opti3DGS, a novel frequency-modulated coarse-to-fine optimization framework that aims to minimize the number of Gaussian primitives used to represent a scene, thus reducing memory and storage demands. Opti3DGS leverages image frequency modulation, initially enforcing a coarse scene representation and progressively refining it by modulating frequency details in the training images. On the baseline 3DGS, we demonstrate an average reduction of 62% in Gaussians, a 40% reduction in the training GPU memory requirements and a 20% reduction in optimization time without sacrificing the visual quality. Furthermore, we show that our method integrates seamlessly with many 3DGS-based techniques, consistently reducing the number of Gaussian primitives while maintaining, and often improving, visual quality. Additionally, Opti3DGS inherently produces a level-of-detail scene representation at no extra cost, a natural byproduct of the optimization pipeline. Results and code will be made publicly available.
Related papers
- Compressing 3D Gaussian Splatting by Noise-Substituted Vector Quantization [14.71160140310766]
3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness in 3D reconstruction, achieving high-quality results with real-time radiance field rendering.
However, a key challenge is the substantial storage cost: reconstructing a single scene typically requires millions of Gaussian splats, each represented by 59 floating-point parameters, resulting in approximately 1 GB of memory.
We propose a compression method by building separate attribute codebooks and storing only discrete code indices. Specifically, we employ noise-substituted vector quantization technique to jointly train the codebooks and model features, ensuring consistency between descent gradient optimization and parameter discretization
arXiv Detail & Related papers (2025-04-03T22:19:34Z) - DashGaussian: Optimizing 3D Gaussian Splatting in 200 Seconds [71.37326848614133]
We propose DashGaussian, a scheduling scheme over the optimization complexity of 3DGS.
We show that our method accelerates the optimization of various 3DGS backbones by 45.7% on average.
arXiv Detail & Related papers (2025-03-24T07:17:27Z) - Does 3D Gaussian Splatting Need Accurate Volumetric Rendering? [8.421214057144569]
3D Gaussian Splatting (3DGS) is an important reference method for learning 3D representations of a captured scene.<n>NeRFs, which preceded 3DGS, are based on a principled ray-marching approach for rendering.<n>We present an in-depth analysis of the various approximations and assumptions used by the original 3DGS solution.
arXiv Detail & Related papers (2025-02-26T17:11:26Z) - Temporally Compressed 3D Gaussian Splatting for Dynamic Scenes [46.64784407920817]
Temporally Compressed 3D Gaussian Splatting (TC3DGS) is a novel technique designed specifically to compress dynamic 3D Gaussian representations.<n>Our experiments across multiple datasets demonstrate that TC3DGS achieves up to 67$times$ compression with minimal or no degradation in visual quality.
arXiv Detail & Related papers (2024-12-07T17:03:09Z) - Fast Feedforward 3D Gaussian Splatting Compression [55.149325473447384]
3D Gaussian Splatting (FCGS) is an optimization-free model that can compress 3DGS representations rapidly in a single feed-forward pass.<n>FCGS achieves a compression ratio of over 20X while maintaining fidelity, surpassing most per-scene SOTA optimization-based methods.
arXiv Detail & Related papers (2024-10-10T15:13:08Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
We propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance.
In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2024-08-07T14:56:34Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios.<n>We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
Novel View Synthesis (NVS) from unconstrained photo collections is challenging in computer graphics.
We propose an efficient point-based differentiable rendering framework for scene reconstruction from photo collections.
Our approach outperforms existing approaches on the rendering quality of novel view and appearance synthesis with high converge and rendering speed.
arXiv Detail & Related papers (2024-06-04T15:17:37Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
We propose learning-to-prune 3DGS, where a trainable binary mask is applied to the importance score that can find optimal pruning ratio automatically.
Experiments have shown that LP-3DGS consistently produces a good balance that is both efficient and high quality.
arXiv Detail & Related papers (2024-05-29T05:58:34Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.