Compressing 3D Gaussian Splatting by Noise-Substituted Vector Quantization
- URL: http://arxiv.org/abs/2504.03059v2
- Date: Tue, 08 Apr 2025 22:40:23 GMT
- Title: Compressing 3D Gaussian Splatting by Noise-Substituted Vector Quantization
- Authors: Haishan Wang, Mohammad Hassan Vali, Arno Solin,
- Abstract summary: 3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness in 3D reconstruction, achieving high-quality results with real-time radiance field rendering.<n>However, a key challenge is the substantial storage cost: reconstructing a single scene typically requires millions of Gaussian splats, each represented by 59 floating-point parameters, resulting in approximately 1 GB of memory.<n>We propose a compression method by building separate attribute codebooks and storing only discrete code indices. Specifically, we employ noise-substituted vector quantization technique to jointly train the codebooks and model features, ensuring consistency between descent gradient optimization and parameter discretization
- Score: 14.71160140310766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness in 3D reconstruction, achieving high-quality results with real-time radiance field rendering. However, a key challenge is the substantial storage cost: reconstructing a single scene typically requires millions of Gaussian splats, each represented by 59 floating-point parameters, resulting in approximately 1 GB of memory. To address this challenge, we propose a compression method by building separate attribute codebooks and storing only discrete code indices. Specifically, we employ noise-substituted vector quantization technique to jointly train the codebooks and model features, ensuring consistency between gradient descent optimization and parameter discretization. Our method reduces the memory consumption efficiently (around $45\times$) while maintaining competitive reconstruction quality on standard 3D benchmark scenes. Experiments on different codebook sizes show the trade-off between compression ratio and image quality. Furthermore, the trained compressed model remains fully compatible with popular 3DGS viewers and enables faster rendering speed, making it well-suited for practical applications.
Related papers
- 4DGC: Rate-Aware 4D Gaussian Compression for Efficient Streamable Free-Viewpoint Video [56.04182926886754]
3D Gaussian Splatting (3DGS) has substantial potential for enabling photorealistic Free-Viewpoint Video (FVV) experiences.
Existing methods typically handle dynamic 3DGS representation and compression separately, motion information and the rate-distortion trade-off during training.
We propose 4DGC, a rate-aware 4D Gaussian compression framework that significantly reduces storage size while maintaining superior RD performance for FVV.
arXiv Detail & Related papers (2025-03-24T08:05:27Z) - Compression of 3D Gaussian Splatting with Optimized Feature Planes and Standard Video Codecs [5.583906047971048]
3D Splatting is a recognized method for 3D scene representation, known for its high rendering quality and speed.
We introduce an efficient compression technique that significantly reduces storage overhead by using compact representation.
Experimental results demonstrate that our method outperforms existing methods in data compactness while maintaining high rendering quality.
arXiv Detail & Related papers (2025-01-06T21:37:30Z) - Temporally Compressed 3D Gaussian Splatting for Dynamic Scenes [46.64784407920817]
Temporally Compressed 3D Gaussian Splatting (TC3DGS) is a novel technique designed specifically to compress dynamic 3D Gaussian representations.<n>Our experiments across multiple datasets demonstrate that TC3DGS achieves up to 67$times$ compression with minimal or no degradation in visual quality.
arXiv Detail & Related papers (2024-12-07T17:03:09Z) - MEGA: Memory-Efficient 4D Gaussian Splatting for Dynamic Scenes [49.36091070642661]
This paper introduces a memory-efficient framework for 4DGS.
It achieves a storage reduction by approximately 190$times$ and 125$times$ on the Technicolor and Neural 3D Video datasets.
It maintains comparable rendering speeds and scene representation quality, setting a new standard in the field.
arXiv Detail & Related papers (2024-10-17T14:47:08Z) - Fast Feedforward 3D Gaussian Splatting Compression [55.149325473447384]
3D Gaussian Splatting (FCGS) is an optimization-free model that can compress 3DGS representations rapidly in a single feed-forward pass.<n>FCGS achieves a compression ratio of over 20X while maintaining fidelity, surpassing most per-scene SOTA optimization-based methods.
arXiv Detail & Related papers (2024-10-10T15:13:08Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
We propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance.
In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2024-08-07T14:56:34Z) - 3DGS.zip: A survey on 3D Gaussian Splatting Compression Methods [10.122120872952296]
3D Gaussian Splatting (3DGS) has emerged as a cutting-edge technique for real-time radiance field rendering.<n>Despite its advantages in rendering speed and image fidelity, 3DGS is limited by its significant storage and memory demands.<n>This survey provides a detailed examination of compression and compaction techniques developed to make 3DGS more efficient.
arXiv Detail & Related papers (2024-06-17T11:43:38Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios.<n>We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - ContextGS: Compact 3D Gaussian Splatting with Anchor Level Context Model [77.71796503321632]
We introduce a context model in the anchor level for 3DGS representation, yielding an impressive size reduction of over 100 times compared to vanilla 3DGS.
Our work pioneers the context model in the anchor level for 3DGS representation, yielding an impressive size reduction of over 100 times compared to vanilla 3DGS and 15 times compared to the most recent state-of-the-art work Scaffold-GS.
arXiv Detail & Related papers (2024-05-31T09:23:39Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
arXiv Detail & Related papers (2024-04-15T04:50:39Z) - Compact 3D Gaussian Representation for Radiance Field [14.729871192785696]
We propose a learnable mask strategy to reduce the number of 3D Gaussian points without sacrificing performance.
We also propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2023-11-22T20:31:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.