論文の概要: Directional Sign Loss: A Topology-Preserving Loss Function that Approximates the Sign of Finite Differences
- arxiv url: http://arxiv.org/abs/2504.04202v1
- Date: Sat, 05 Apr 2025 15:17:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:10:26.307866
- Title: Directional Sign Loss: A Topology-Preserving Loss Function that Approximates the Sign of Finite Differences
- Title(参考訳): 方向性符号損失:有限差の符号を近似する位相保存損失関数
- Authors: Harvey Dam, Tripti Agarwal, Ganesh Gopalakrishnan,
- Abstract要約: 本稿では、2つの配列間の有限差の符号におけるミスマッチ数を近似する新しい損失関数である指向性符号損失(DSL)を紹介する。
従来の損失関数とDSLを組み合わせることで,従来の損失関数よりもトポロジ的特徴を効果的に維持できることを示す。
DSLは、共通のトポロジベースのメトリクスの差別化可能な効率的なプロキシとして機能し、グラデーションベースの最適化フレームワークでの使用を可能にします。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License:
- Abstract: Preserving critical topological features in learned latent spaces is a fundamental challenge in representation learning, particularly for topology-sensitive data. This paper introduces directional sign loss (DSL), a novel loss function that approximates the number of mismatches in the signs of finite differences between corresponding elements of two arrays. By penalizing discrepancies in critical points between input and reconstructed data, DSL encourages autoencoders and other learnable compressors to retain the topological features of the original data. We present the mathematical formulation, complexity analysis, and practical implementation of DSL, comparing its behavior to its non-differentiable counterpart and to other topological measures. Experiments on one-, two-, and three-dimensional data show that combining DSL with traditional loss functions preserves topological features more effectively than traditional losses alone. Moreover, DSL serves as a differentiable, efficient proxy for common topology-based metrics, enabling its use in gradient-based optimization frameworks.
- Abstract(参考訳): 学習した潜在空間における重要なトポロジ的特徴を保存することは、特にトポロジに敏感なデータにおいて、表現学習における根本的な課題である。
本稿では、2つの配列の対応する要素間の有限差の符号におけるミスマッチ数を近似する新規な損失関数である指向性符号損失(DSL)を紹介する。
入力データと再構成データの臨界点における不一致を罰することにより、DSLは、オートエンコーダや他の学習可能な圧縮機が元のデータのトポロジ的特徴を保持することを奨励する。
本稿では,DSLの数学的定式化,複雑性解析,実践的実装について述べる。
1次元、2次元、および3次元のデータによる実験では、DSLと従来の損失関数を組み合わせることで、従来の損失のみよりも効率的なトポロジ的特徴が保たれている。
さらに、DSLは共通のトポロジベースのメトリクスの微分可能かつ効率的なプロキシとして機能し、勾配ベースの最適化フレームワークでの使用を可能にします。
関連論文リスト
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - Deep Regression Representation Learning with Topology [57.203857643599875]
回帰表現の有効性は,そのトポロジによってどのように影響されるかを検討する。
本稿では,特徴空間の内在次元と位相を対象空間と一致させる正則化器PH-Regを紹介する。
合成および実世界の回帰タスクの実験はPH-Regの利点を示している。
論文 参考訳(メタデータ) (2024-04-22T06:28:41Z) - Multi-channel Time Series Decomposition Network For Generalizable Sensor-Based Activity Recognition [2.024925013349319]
本稿では,MTSDNet(Multi- Channel Time Series Decomposition Network)を提案する。
トレーニング可能なパラメータ化時間分解により、元の信号を複数の成分と三角関数の組み合わせに分解する。
提案手法の精度と安定性を他の競合戦略と比較して予測する利点を示す。
論文 参考訳(メタデータ) (2024-03-28T12:54:06Z) - Nonlinear Feature Aggregation: Two Algorithms driven by Theory [45.3190496371625]
現実世界の機械学習アプリケーションは、膨大な機能によって特徴付けられ、計算やメモリの問題を引き起こす。
一般集約関数を用いて特徴量の非線形変換を集約する次元還元アルゴリズム(NonLinCFA)を提案する。
また、アルゴリズムを合成および実世界のデータセット上でテストし、回帰および分類タスクを実行し、競合性能を示す。
論文 参考訳(メタデータ) (2023-06-19T19:57:33Z) - Learning Topology-Preserving Data Representations [9.710409273484464]
位相保存データ表現(次元減少)を学習する手法を提案する。
この手法の中核は、元の高次元データと潜時空間における低次元表現との間の表現トポロジディバージェンス(RTD)の最小化である。
提案手法は, 線形相関, 三重項距離ランキング精度, 永続バーコード間のワッサーシュタイン距離によって測定された, 最先端の競合相手よりも, データ多様体のグローバル構造とトポロジーをよりよく保存する。
論文 参考訳(メタデータ) (2023-01-31T22:55:04Z) - Topologically Regularized Data Embeddings [15.001598256750619]
低次元埋め込みにトポロジ的事前知識を組み込むための代数的トポロジに基づく汎用的アプローチを導入する。
正規化器としてそのような位相損失関数を用いて埋め込み損失を共同最適化すると、局所的な近似だけでなく所望の位相構造も反映する埋め込みが得られることを示す。
線形および非線形次元削減法とグラフ埋め込み法を組み合わせた計算効率,堅牢性,汎用性に関する提案手法を実験的に評価した。
論文 参考訳(メタデータ) (2023-01-09T13:49:47Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
部分観察決定過程(POMDP)の無限観測および状態空間を用いた強化学習について検討した。
線形構造をもつPOMDPのクラスに対する部分可観測性と関数近似の最初の試みを行う。
論文 参考訳(メタデータ) (2022-04-20T21:15:38Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
逆変換ネットワークを用いたセマンティックセグメンテーションのための新しい境界認識損失項を提案する。
このプラグイン損失項は境界変換の捕捉におけるクロスエントロピー損失を補完する。
室内および屋外のセグメンテーションベンチマークにおける損失関数の定量的および定性的効果を解析した。
論文 参考訳(メタデータ) (2021-04-06T18:52:45Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - Measure Inducing Classification and Regression Trees for Functional Data [0.0]
機能的データ分析の文脈における分類と回帰問題に対する木に基づくアルゴリズムを提案する。
これは、制約付き凸最適化により重み付き汎函数 L2$ 空間を学習することで達成される。
論文 参考訳(メタデータ) (2020-10-30T18:49:53Z) - Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation [56.343646789922545]
そこで本研究では,各計量に対する相異なるサロゲート損失を探索することにより,計量固有損失関数の設計を自動化することを提案する。
PASCAL VOCとCityscapesの実験では、探索されたサロゲート損失は手動で設計した損失関数よりも優れていた。
論文 参考訳(メタデータ) (2020-10-15T17:59:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。