Generating Causal Explanations of Vehicular Agent Behavioural Interactions with Learnt Reward Profiles
- URL: http://arxiv.org/abs/2503.14557v1
- Date: Tue, 18 Mar 2025 01:53:59 GMT
- Title: Generating Causal Explanations of Vehicular Agent Behavioural Interactions with Learnt Reward Profiles
- Authors: Rhys Howard, Nick Hawes, Lars Kunze,
- Abstract summary: We learn a weighting of reward metrics for agents such that explanations for agent interactions can be causally inferred.<n>We validate our approach quantitatively and qualitatively across three real-world driving datasets.
- Score: 13.450023647228843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transparency and explainability are important features that responsible autonomous vehicles should possess, particularly when interacting with humans, and causal reasoning offers a strong basis to provide these qualities. However, even if one assumes agents act to maximise some concept of reward, it is difficult to make accurate causal inferences of agent planning without capturing what is of importance to the agent. Thus our work aims to learn a weighting of reward metrics for agents such that explanations for agent interactions can be causally inferred. We validate our approach quantitatively and qualitatively across three real-world driving datasets, demonstrating a functional improvement over previous methods and competitive performance across evaluation metrics.
Related papers
- Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.<n>Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.<n>We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - Understanding Individual Agent Importance in Multi-Agent System via Counterfactual Reasoning [20.76991315856237]
We propose EMAI, a novel agent-level explanation approach that evaluates the individual agent's importance.<n>Inspired by counterfactual reasoning, a larger change in reward caused by the randomized action of agent indicates its higher importance.<n> EMAI achieves higher fidelity in explanations than baselines and provides more effective guidance in practical applications.
arXiv Detail & Related papers (2024-12-20T07:24:43Z) - Learning responsibility allocations for multi-agent interactions: A differentiable optimization approach with control barrier functions [12.074590482085831]
We seek to codify factors governing safe multi-agent interactions via the lens of responsibility.
We propose a data-driven modeling approach based on control barrier functions and differentiable optimization.
arXiv Detail & Related papers (2024-10-09T20:20:41Z) - Enhancing Trust in Autonomous Agents: An Architecture for Accountability and Explainability through Blockchain and Large Language Models [0.3495246564946556]
This work presents an accountability and explainability architecture implemented for ROS-based mobile robots.<n>The proposed solution consists of two main components. Firstly, a black box-like element to provide accountability, featuring anti-tampering properties achieved through blockchain technology.<n> Secondly, a component in charge of generating natural language explanations by harnessing the capabilities of Large Language Models (LLMs) over the data contained within the previously mentioned black box.
arXiv Detail & Related papers (2024-03-14T16:57:18Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions.
We introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries.
We empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals.
arXiv Detail & Related papers (2024-02-14T14:36:30Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
Large Language Models (LLMs) have demonstrated their ability to replicate human behaviors across a wide range of scenarios.
However, their capability in handling complex, multi-character social interactions has yet to be fully explored.
We introduce the Multi-Agent Interaction Evaluation Framework (AntEval), encompassing a novel interaction framework and evaluation methods.
arXiv Detail & Related papers (2024-01-12T11:18:00Z) - How Far Are LLMs from Believable AI? A Benchmark for Evaluating the Believability of Human Behavior Simulation [46.42384207122049]
We design SimulateBench to evaluate the believability of large language models (LLMs) when simulating human behaviors.
Based on SimulateBench, we evaluate the performances of 10 widely used LLMs when simulating characters.
arXiv Detail & Related papers (2023-12-28T16:51:11Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Behavioral Analysis of Vision-and-Language Navigation Agents [21.31684388423088]
Vision-and-Language Navigation (VLN) agents must be able to ground instructions to actions based on surroundings.
We develop a methodology to study agent behavior on a skill-specific basis.
arXiv Detail & Related papers (2023-07-20T11:42:24Z) - Robust Event-Driven Interactions in Cooperative Multi-Agent Learning [0.0]
We present an approach to reduce the communication required between agents in a Multi-Agent learning system by exploiting the inherent robustness of the underlying Markov Decision Process.
We compute so-called robustness surrogate functions (off-line), that give agents a conservative indication of how far their state measurements can deviate before they need to update other agents in the system.
This results in fully distributed decision functions, enabling agents to decide when it is necessary to update others.
arXiv Detail & Related papers (2022-04-07T11:00:39Z) - Explaining Reinforcement Learning Policies through Counterfactual
Trajectories [147.7246109100945]
A human developer must validate that an RL agent will perform well at test-time.
Our method conveys how the agent performs under distribution shifts by showing the agent's behavior across a wider trajectory distribution.
In a user study, we demonstrate that our method enables users to score better than baseline methods on one of two agent validation tasks.
arXiv Detail & Related papers (2022-01-29T00:52:37Z) - Maximizing Information Gain in Partially Observable Environments via
Prediction Reward [64.24528565312463]
This paper tackles the challenge of using belief-based rewards for a deep RL agent.
We derive the exact error between negative entropy and the expected prediction reward.
This insight provides theoretical motivation for several fields using prediction rewards.
arXiv Detail & Related papers (2020-05-11T08:13:49Z) - Self-Attention Attribution: Interpreting Information Interactions Inside
Transformer [89.21584915290319]
We propose a self-attention attribution method to interpret the information interactions inside Transformer.
We show that the attribution results can be used as adversarial patterns to implement non-targeted attacks towards BERT.
arXiv Detail & Related papers (2020-04-23T14:58:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.