Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance
- URL: http://arxiv.org/abs/2503.14569v1
- Date: Tue, 18 Mar 2025 11:27:28 GMT
- Title: Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance
- Authors: Liya Guo, Zun Wang, Chang Liu, Junzhe Li, Pipi Hu, Yi Zhu,
- Abstract summary: We propose Potential Score Matching (PSM), an approach that utilizes the potential energy gradient to guide generative models.<n>PSM does not require exact energy functions and can debias sample distributions even when trained on limited and biased data.<n>The results demonstrate that molecular distributions generated by PSM more closely approximate the Boltzmann distribution compared to traditional diffusion models.
- Score: 11.562962976129292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ensemble average of physical properties of molecules is closely related to the distribution of molecular conformations, and sampling such distributions is a fundamental challenge in physics and chemistry. Traditional methods like molecular dynamics (MD) simulations and Markov chain Monte Carlo (MCMC) sampling are commonly used but can be time-consuming and costly. Recently, diffusion models have emerged as efficient alternatives by learning the distribution of training data. Obtaining an unbiased target distribution is still an expensive task, primarily because it requires satisfying ergodicity. To tackle these challenges, we propose Potential Score Matching (PSM), an approach that utilizes the potential energy gradient to guide generative models. PSM does not require exact energy functions and can debias sample distributions even when trained on limited and biased data. Our method outperforms existing state-of-the-art (SOTA) models on the Lennard-Jones (LJ) potential, a commonly used toy model. Furthermore, we extend the evaluation of PSM to high-dimensional problems using the MD17 and MD22 datasets. The results demonstrate that molecular distributions generated by PSM more closely approximate the Boltzmann distribution compared to traditional diffusion models.
Related papers
- MDDM: A Molecular Dynamics Diffusion Model to Predict Particle Self-Assembly [0.0]
The Molecular Dynamics Diffusion Model is capable of predicting a valid output for a given input pair potential function.<n>The model significantly outperforms the baseline point-cloud diffusion model for both unconditional and conditional generation tasks.
arXiv Detail & Related papers (2025-01-28T22:21:45Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with Energy-Based Models [12.327318533784961]
We present a maximum reinforcement learning (IRL) approach for improving the sample quality of diffusion generative models.
We train (or fine-tune) a diffusion model using the log density estimated from training data.
Our empirical studies show that diffusion models fine-tuned using DxMI can generate high-quality samples in as few as 4 and 10 steps.
arXiv Detail & Related papers (2024-06-30T08:52:17Z) - Generalized Contrastive Divergence: Joint Training of Energy-Based Model
and Diffusion Model through Inverse Reinforcement Learning [13.22531381403974]
Generalized Contrastive Divergence (GCD) is a novel objective function for training an energy-based model (EBM) and a sampler simultaneously.
We present preliminary yet promising results showing that joint training is beneficial for both EBM and a diffusion model.
arXiv Detail & Related papers (2023-12-06T10:10:21Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
We propose a novel generative model named GeoDiff for molecular conformation prediction.
We show that GeoDiff is superior or comparable to existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-06T09:47:01Z) - Particle Dynamics for Learning EBMs [83.59335980576637]
Energy-based modeling is a promising approach to unsupervised learning, which yields many downstream applications from a single model.
The main difficulty in learning energy-based models with the "contrastive approaches" is the generation of samples from the current energy function at each iteration.
This paper proposes an alternative approach to getting these samples and avoiding crude MCMC sampling from the current model.
arXiv Detail & Related papers (2021-11-26T23:41:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.