Sepsyn-OLCP: An Online Learning-based Framework for Early Sepsis Prediction with Uncertainty Quantification using Conformal Prediction
- URL: http://arxiv.org/abs/2503.14663v1
- Date: Tue, 18 Mar 2025 19:10:34 GMT
- Title: Sepsyn-OLCP: An Online Learning-based Framework for Early Sepsis Prediction with Uncertainty Quantification using Conformal Prediction
- Authors: Anni Zhou, Beyah Raheem, Rishikesan Kamaleswaran, Yao Xie,
- Abstract summary: Early sepsis prediction plays a crucial role in facilitating early interventions for septic patients.<n>This paper proposes Sepsyn-OLCP, a novel online learning algorithm for early sepsis prediction.<n>The proposed methodology delivers accurate and trustworthy predictions, addressing a critical need in high-stakes healthcare applications.
- Score: 7.939586935057782
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Sepsis is a life-threatening syndrome with high morbidity and mortality in hospitals. Early prediction of sepsis plays a crucial role in facilitating early interventions for septic patients. However, early sepsis prediction systems with uncertainty quantification and adaptive learning are scarce. This paper proposes Sepsyn-OLCP, a novel online learning algorithm for early sepsis prediction by integrating conformal prediction for uncertainty quantification and Bayesian bandits for adaptive decision-making. By combining the robustness of Bayesian models with the statistical uncertainty guarantees of conformal prediction methodologies, this algorithm delivers accurate and trustworthy predictions, addressing the critical need for reliable and adaptive systems in high-stakes healthcare applications such as early sepsis prediction. We evaluate the performance of Sepsyn-OLCP in terms of regret in stochastic bandit setting, the area under the receiver operating characteristic curve (AUROC), and F-measure. Our results show that Sepsyn-OLCP outperforms existing individual models, increasing AUROC of a neural network from 0.64 to 0.73 without retraining and high computational costs. And the model selection policy converges to the optimal strategy in the long run. We propose a novel reinforcement learning-based framework integrated with conformal prediction techniques to provide uncertainty quantification for early sepsis prediction. The proposed methodology delivers accurate and trustworthy predictions, addressing a critical need in high-stakes healthcare applications like early sepsis prediction.
Related papers
- NeuroSep-CP-LCB: A Deep Learning-based Contextual Multi-armed Bandit Algorithm with Uncertainty Quantification for Early Sepsis Prediction [9.292433273395782]
We aim to model patient-specific reward functions in a contextual multi-armed bandit setting.
The goal is to leverage patient-specific clinical features to optimize decision-making under uncertainty.
This paper proposes NeuroSep-CP-LCB, a novel integration of neural networks with contextual bandits and conformal prediction tailored for early sepsis detection.
arXiv Detail & Related papers (2025-03-20T21:02:49Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Inadequacy of common stochastic neural networks for reliable clinical
decision support [0.4262974002462632]
Widespread adoption of AI for medical decision making is still hindered due to ethical and safety-related concerns.
Common deep learning approaches, however, have the tendency towards overconfidence under data shift.
This study investigates their actual reliability in clinical applications.
arXiv Detail & Related papers (2024-01-24T18:49:30Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Early Warning Prediction with Automatic Labeling in Epilepsy Patients [4.6700203020828885]
We propose a meta learning framework to improve the prediction of early ictal signals.
The proposed bi-level optimization framework can help automatically label noisy data at the early ictal stage.
arXiv Detail & Related papers (2023-10-09T18:12:46Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
A lack of statistically rigorous uncertainty quantification is a significant factor undermining trust in AI results.
Recent developments in distribution-free uncertainty quantification present practical solutions for these issues.
We demonstrate a technique for forming ordinal prediction sets that are guaranteed to contain the correct stenosis severity.
arXiv Detail & Related papers (2022-07-05T18:01:20Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.