Construction Site Scaffolding Completeness Detection Based on Mask R-CNN and Hough Transform
- URL: http://arxiv.org/abs/2503.14716v1
- Date: Tue, 18 Mar 2025 20:27:22 GMT
- Title: Construction Site Scaffolding Completeness Detection Based on Mask R-CNN and Hough Transform
- Authors: Pei-Hsin Lin, Jacob J. Lin, Shang-Hsien Hsieh,
- Abstract summary: This paper proposes a deep learning-based approach to detect the scaffolding and its cross braces using computer vision.<n>A scaffold image dataset with annotated labels is used to train a convolutional neural network (CNN) model.
- Score: 2.7309692684728617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Construction site scaffolding is essential for many building projects, and ensuring its safety is crucial to prevent accidents. The safety inspector must check the scaffolding's completeness and integrity, where most violations occur. The inspection process includes ensuring all the components are in the right place since workers often compromise safety for convenience and disassemble parts such as cross braces. This paper proposes a deep learning-based approach to detect the scaffolding and its cross braces using computer vision. A scaffold image dataset with annotated labels is used to train a convolutional neural network (CNN) model. With the proposed approach, we can automatically detect the completeness of cross braces from images taken at construction sites, without the need for manual inspection, saving a significant amount of time and labor costs. This non-invasive and efficient solution for detecting scaffolding completeness can help improve safety in construction sites.
Related papers
- Post-disaster building indoor damage and survivor detection using autonomous path planning and deep learning with unmanned aerial vehicles [5.897549460175895]
This paper proposed an autonomous inspection approach for structural damage inspection and survivor detection in the post-disaster building indoor scenario.
It incorporates an autonomous navigation method, deep learning-based damage and survivor detection method, and a customized low-cost micro aerial vehicle (MAV) with onboard sensors.
Experimental studies in a pseudo-post-disaster office building have shown the proposed methodology can achieve high accuracy in structural damage inspection and survivor detection.
arXiv Detail & Related papers (2025-03-13T04:13:48Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios.<n>Existing edge detection methods face challenges: difficulty balancing detection precision with lightweight models, limited adaptability, and insufficient real-world validation.<n>We propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments.
arXiv Detail & Related papers (2024-12-24T07:28:10Z) - AR-Facilitated Safety Inspection and Fall Hazard Detection on Construction Sites [17.943278018516416]
We are exploring the potential of head-mounted augmented reality to facilitate safety inspections on high-rise construction sites.<n>A particular concern in the industry is inspecting perimeter safety screens on higher levels of construction sites, intended to prevent falls of people and objects.<n>We aim to support workers performing this inspection task by tracking which parts of the safety screens have been inspected.<n>We use machine learning to automatically detect gaps in the perimeter screens that require closer inspection and remediation and to automate reporting.
arXiv Detail & Related papers (2024-12-02T08:38:43Z) - A Deep Learning Approach to Detect Complete Safety Equipment For Construction Workers Based On YOLOv7 [0.0]
In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers.
The recommended approach uses the YOLO v7 object detection algorithm to precisely locate these safety items.
Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition.
arXiv Detail & Related papers (2024-06-11T20:38:41Z) - Towards Improving Workers' Safety and Progress Monitoring of
Construction Sites Through Construction Site Understanding [0.0]
We propose a lightweight Optimized Positioning (OP) module to improve channel relation based on global feature affinity association.
OP-Net is a general deep neural network module that can be plugged into any deep neural network.
A benchmark test using SODA demonstrated that our OP-Net was capable of achieving new state-of-the-art performance in accuracy.
arXiv Detail & Related papers (2022-10-27T20:33:46Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - ObjectSeeker: Certifiably Robust Object Detection against Patch Hiding
Attacks via Patch-agnostic Masking [95.6347501381882]
Object detectors are found to be vulnerable to physical-world patch hiding attacks.
We propose ObjectSeeker as a framework for building certifiably robust object detectors.
arXiv Detail & Related papers (2022-02-03T19:34:25Z) - Fast and Robust Structural Damage Analysis of Civil Infrastructure Using
UAV Imagery [0.0]
We propose an end-to-end method for automated structural inspection damage analysis.
Using automated object detection and segmentation we accurately localize defects, bridge utilities and elements.
Our technique not only enables fast and robust damage analysis of UAV imagery, as we show herein, but is also effective for analyzing manually acquired images.
arXiv Detail & Related papers (2021-10-10T14:24:26Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
We study the effectiveness of auxiliary self-supervised tasks to improve the out-of-distribution generalization of object detectors.
Inspired by the principle of maximum entropy, we introduce a novel self-supervised task, instance-level temporal cycle confusion (CycConf)
For each object, the task is to find the most different object proposals in the adjacent frame in a video and then cycle back to itself for self-supervision.
arXiv Detail & Related papers (2021-04-16T21:35:08Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
We propose a post-processing algorithm to align the segmented plane masks with edges detected in the image.
This allows us to increase the accuracy of state-of-the-art approaches, while limiting ourselves to cuboid-shaped objects.
arXiv Detail & Related papers (2020-03-28T18:51:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.