Learning with Expert Abstractions for Efficient Multi-Task Continuous Control
- URL: http://arxiv.org/abs/2503.14809v1
- Date: Wed, 19 Mar 2025 00:44:23 GMT
- Title: Learning with Expert Abstractions for Efficient Multi-Task Continuous Control
- Authors: Jeff Jewett, Sandhya Saisubramanian,
- Abstract summary: Decision-making in continuous multi-task environments is often hindered by the difficulty of obtaining accurate models for planning and the inefficiency of learning purely from trial and error.<n>We propose a hierarchical reinforcement learning approach that addresses these limitations by dynamically planning over the expert-specified abstraction to generate subgoals to learn a goal-conditioned policy.<n>Our empirical evaluation on a suite of procedurally generated continuous control environments demonstrates that our approach outperforms existing hierarchical reinforcement learning methods in terms of sample efficiency, task completion rate, scalability to complex tasks, and generalization to novel scenarios.
- Score: 5.796482272333648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decision-making in complex, continuous multi-task environments is often hindered by the difficulty of obtaining accurate models for planning and the inefficiency of learning purely from trial and error. While precise environment dynamics may be hard to specify, human experts can often provide high-fidelity abstractions that capture the essential high-level structure of a task and user preferences in the target environment. Existing hierarchical approaches often target discrete settings and do not generalize across tasks. We propose a hierarchical reinforcement learning approach that addresses these limitations by dynamically planning over the expert-specified abstraction to generate subgoals to learn a goal-conditioned policy. To overcome the challenges of learning under sparse rewards, we shape the reward based on the optimal state value in the abstract model. This structured decision-making process enhances sample efficiency and facilitates zero-shot generalization. Our empirical evaluation on a suite of procedurally generated continuous control environments demonstrates that our approach outperforms existing hierarchical reinforcement learning methods in terms of sample efficiency, task completion rate, scalability to complex tasks, and generalization to novel scenarios.
Related papers
- Action abstractions for amortized sampling [49.384037138511246]
We propose an approach to incorporate the discovery of action abstractions, or high-level actions, into the policy optimization process.
Our approach involves iteratively extracting action subsequences commonly used across many high-reward trajectories and chunking' them into a single action that is added to the action space.
arXiv Detail & Related papers (2024-10-19T19:22:50Z) - Learning Abstract World Model for Value-preserving Planning with Options [11.254212901595523]
We leverage the structure of a given set of temporally-extended actions to learn abstract Markov decision processes (MDPs)
We characterize state abstractions necessary to ensure that planning with these skills, by simulating trajectories in the abstract MDP, results in policies with bounded value loss in the original MDP.
We evaluate our approach in goal-based navigation environments that require continuous abstract states to plan successfully and show that abstract model learning improves the sample efficiency of planning and learning.
arXiv Detail & Related papers (2024-06-22T13:41:02Z) - Building Minimal and Reusable Causal State Abstractions for
Reinforcement Learning [63.58935783293342]
Causal Bisimulation Modeling (CBM) is a method that learns the causal relationships in the dynamics and reward functions for each task to derive a minimal, task-specific abstraction.
CBM's learned implicit dynamics models identify the underlying causal relationships and state abstractions more accurately than explicit ones.
arXiv Detail & Related papers (2024-01-23T05:43:15Z) - Consciousness-Inspired Spatio-Temporal Abstractions for Better Generalization in Reinforcement Learning [83.41487567765871]
Skipper is a model-based reinforcement learning framework.
It automatically generalizes the task given into smaller, more manageable subtasks.
It enables sparse decision-making and focused abstractions on the relevant parts of the environment.
arXiv Detail & Related papers (2023-09-30T02:25:18Z) - Discovering Hierarchical Achievements in Reinforcement Learning via
Contrastive Learning [17.28280896937486]
We introduce a novel contrastive learning method, called achievement distillation, which strengthens the agent's ability to predict the next achievement.
Our method exhibits a strong capacity for discovering hierarchical achievements and shows state-of-the-art performance on the challenging Crafter environment.
arXiv Detail & Related papers (2023-07-07T09:47:15Z) - CRISP: Curriculum Inducing Primitive Informed Subgoal Prediction for Hierarchical Reinforcement Learning [25.84621883831624]
We present CRISP, a novel HRL algorithm that generates a curriculum of achievable subgoals for evolving lower-level primitives.
CRISP uses the lower level primitive to periodically perform data relabeling on a handful of expert demonstrations.
We demonstrate that CRISP demonstrates impressive generalization in real world scenarios.
arXiv Detail & Related papers (2023-04-07T08:22:50Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
We present Efficient Learning of High-Level Plans from Play (ELF-P), a framework for robotic learning that bridges motion planning and deep RL.
We demonstrate that ELF-P has significantly better sample efficiency than relevant baselines over multiple realistic manipulation tasks.
arXiv Detail & Related papers (2023-03-16T20:09:47Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Hierarchical Imitation Learning with Vector Quantized Models [77.67190661002691]
We propose to use reinforcement learning to identify subgoals in expert trajectories.
We build a vector-quantized generative model for the identified subgoals to perform subgoal-level planning.
In experiments, the algorithm excels at solving complex, long-horizon decision-making problems outperforming state-of-the-art.
arXiv Detail & Related papers (2023-01-30T15:04:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.