FetalFlex: Anatomy-Guided Diffusion Model for Flexible Control on Fetal Ultrasound Image Synthesis
- URL: http://arxiv.org/abs/2503.14906v1
- Date: Wed, 19 Mar 2025 05:16:19 GMT
- Title: FetalFlex: Anatomy-Guided Diffusion Model for Flexible Control on Fetal Ultrasound Image Synthesis
- Authors: Yaofei Duan, Tao Tan, Zhiyuan Zhu, Yuhao Huang, Yuanji Zhang, Rui Gao, Patrick Cheong-Iao Pang, Xinru Gao, Guowei Tao, Xiang Cong, Zhou Li, Lianying Liang, Guangzhi He, Linliang Yin, Xuedong Deng, Xin Yang, Dong Ni,
- Abstract summary: We introduce a Flexible Fetal US image generation framework (FetalFlex) to address these challenges.<n>FetalFlex incorporates a pre-alignment module to enhance controllability and introduces a repaint strategy to ensure consistent texture and appearance.<n> Experiments on multi-center datasets demonstrate that FetalFlex achieved state-of-the-art performance across multiple image quality metrics.
- Score: 16.640351512021017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fetal ultrasound (US) examinations require the acquisition of multiple planes, each providing unique diagnostic information to evaluate fetal development and screening for congenital anomalies. However, obtaining a comprehensive, multi-plane annotated fetal US dataset remains challenging, particularly for rare or complex anomalies owing to their low incidence and numerous subtypes. This poses difficulties in training novice radiologists and developing robust AI models, especially for detecting abnormal fetuses. In this study, we introduce a Flexible Fetal US image generation framework (FetalFlex) to address these challenges, which leverages anatomical structures and multimodal information to enable controllable synthesis of fetal US images across diverse planes. Specifically, FetalFlex incorporates a pre-alignment module to enhance controllability and introduces a repaint strategy to ensure consistent texture and appearance. Moreover, a two-stage adaptive sampling strategy is developed to progressively refine image quality from coarse to fine levels. We believe that FetalFlex is the first method capable of generating both in-distribution normal and out-of-distribution abnormal fetal US images, without requiring any abnormal data. Experiments on multi-center datasets demonstrate that FetalFlex achieved state-of-the-art performance across multiple image quality metrics. A reader study further confirms the close alignment of the generated results with expert visual assessments. Furthermore, synthetic images by FetalFlex significantly improve the performance of six typical deep models in downstream classification and anomaly detection tasks. Lastly, FetalFlex's anatomy-level controllable generation offers a unique advantage for anomaly simulation and creating paired or counterfactual data at the pixel level. The demo is available at: https://dyf1023.github.io/FetalFlex/.
Related papers
- FetalCLIP: A Visual-Language Foundation Model for Fetal Ultrasound Image Analysis [0.676810348604193]
FetalCLIP is a vision-language foundation model capable of generating universal representation of fetal ultrasound images.<n>It was pre-trained using a multimodal learning approach on a diverse dataset of 210,035 fetal ultrasound images paired with text.
arXiv Detail & Related papers (2025-02-20T18:30:34Z) - DiffDoctor: Diagnosing Image Diffusion Models Before Treating [57.82359018425674]
We propose DiffDoctor, a two-stage pipeline to assist image diffusion models in generating fewer artifacts.<n>We collect a dataset of over 1M flawed synthesized images and set up an efficient human-in-the-loop annotation process.<n>The learned artifact detector is then involved in the second stage to optimize the diffusion model by providing pixel-level feedback.
arXiv Detail & Related papers (2025-01-21T18:56:41Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
We propose a novel unsupervised anomaly detection framework based on a diffusion model.
The proposed framework incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process.
We validate the proposed approach on carotid US, brain MRI, and liver CT datasets.
arXiv Detail & Related papers (2024-11-06T15:43:51Z) - Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Towards Realistic Ultrasound Fetal Brain Imaging Synthesis [0.7315240103690552]
There are few public ultrasound fetal imaging datasets due to insufficient amounts of clinical data, patient privacy, rare occurrence of abnormalities in general practice, and limited experts for data collection and validation.
To address such data scarcity, we proposed generative adversarial networks (GAN)-based models, diffusion-super-resolution-GAN and transformer-based-GAN, to synthesise images of fetal ultrasound brain planes from one public dataset.
arXiv Detail & Related papers (2023-04-08T07:07:20Z) - Dual-distribution discrepancy with self-supervised refinement for
anomaly detection in medical images [29.57501199670898]
We introduce one-class semi-supervised learning (OC-SSL) to utilize known normal and unlabeled images for training.
Ensembles of reconstruction networks are designed to model the distribution of normal images and the distribution of both normal and unlabeled images.
We propose a new perspective on self-supervised learning, which is designed to refine the anomaly scores rather than detect anomalies directly.
arXiv Detail & Related papers (2022-10-09T11:18:45Z) - Deep Anomaly Generation: An Image Translation Approach of Synthesizing
Abnormal Banded Chromosome Images [0.0]
We implement a conditional adversarial network that allows generation of realistic single chromosome images.
An image-to-image translation approach based on self-generated 2D chromosome segmentation label maps is used.
We believe that this approach can be exploited for data augmentation of chromosome data sets with structural abnormalities.
arXiv Detail & Related papers (2021-09-20T17:16:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.