Quantum Metropolis-Hastings algorithm
- URL: http://arxiv.org/abs/2503.14970v1
- Date: Wed, 19 Mar 2025 08:03:53 GMT
- Title: Quantum Metropolis-Hastings algorithm
- Authors: Jonathan E. Moussa,
- Abstract summary: I generalize the Metropolis-Hastings algorithm into a quantum algorithm that can equilibrate, measure, and mix a quantum thermal state on a quantum computer.<n>It performs non-symmetric transitions on labels of state preparation and measurement operations and rejects transitions using imprecise energies extracted by Gaussian-filtered quantum phase estimation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: I generalize the well-known classical Metropolis-Hastings algorithm into a quantum algorithm that can equilibrate, measure, and mix a quantum thermal state on a quantum computer. It performs non-symmetric transitions on labels of state preparation and measurement operations and rejects transitions using imprecise energies extracted by Gaussian-filtered quantum phase estimation.
Related papers
- Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum Algorithms for the computation of quantum thermal averages at
work [0.0]
We consider the practical implementation of the so-called Quantum-Quantum Metropolis algorithm.
We simulate a basic system of three frustrated quantum spins and discuss its systematics.
arXiv Detail & Related papers (2023-08-02T17:05:10Z) - Fighting noise with noise: a stochastic projective quantum eigensolver [0.0]
We present a novel approach to estimating physical observables which leads to a two order of magnitude reduction in the required sampling of the quantum state.
The method can be applied to excited-state calculations and simulation for general chemistry on quantum devices.
arXiv Detail & Related papers (2023-06-26T09:22:06Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Investigation of Perturbation Theory with Variational Quantum Algorithm [0.0]
Variational Quantum Algorithms are among the most promising systems to implement quantum computing.
In this paper, we investigate perturbation theory with these algorithms and prospect the possibility of using the variational quantum algorithm to simulate quantum dynamics in perturbation theory.
arXiv Detail & Related papers (2022-12-30T07:30:05Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - A general quantum algorithm for open quantum dynamics demonstrated with
the Fenna-Matthews-Olson complex [0.0]
We develop a quantum algorithm to simulate any dynamical process represented by either the operator sum representation or the Lindblad master equation.
We demonstrate the quantum algorithm by simulating the dynamics of the Fenna-Matthews-Olson complex on the IBM QASM quantum simulator.
arXiv Detail & Related papers (2021-01-13T19:00:02Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.