A Foundational Theory for Decentralized Sensory Learning
- URL: http://arxiv.org/abs/2503.15130v1
- Date: Wed, 19 Mar 2025 11:44:58 GMT
- Title: A Foundational Theory for Decentralized Sensory Learning
- Authors: Linus Mårtensson, Jonas M. D. Enander, Udaya B. Rongala, Henrik Jörntell,
- Abstract summary: We show that a good minima in sensory activity can be the complete reward signal of the network.<n>We show that this method of learning was likely already present in the earliest unicellular life forms on earth.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In both neuroscience and artificial intelligence, popular functional frameworks and neural network formulations operate by making use of extrinsic error measurements and global learning algorithms. Through a set of conjectures based on evolutionary insights on the origin of cellular adaptive mechanisms, we reinterpret the core meaning of sensory signals to allow the brain to be interpreted as a negative feedback control system, and show how this could lead to local learning algorithms without the need for global error correction metrics. Thereby, a sufficiently good minima in sensory activity can be the complete reward signal of the network, as well as being both necessary and sufficient for biological learning to arise. We show that this method of learning was likely already present in the earliest unicellular life forms on earth. We show evidence that the same principle holds and scales to multicellular organisms where it in addition can lead to division of labour between cells. Available evidence shows that the evolution of the nervous system likely was an adaptation to more effectively communicate intercellular signals to support such division of labour. We therefore propose that the same learning principle that evolved already in the earliest unicellular life forms, i.e. negative feedback control of externally and internally generated sensor signals, has simply been scaled up to become a fundament of the learning we see in biological brains today. We illustrate diverse biological settings, from the earliest unicellular organisms to humans, where this operational principle appears to be a plausible interpretation of the meaning of sensor signals in biology, and how this relates to current neuroscientific theories and findings.
Related papers
- From Worms to Mice: Homeostasis Maybe All You Need [0.0]
We propose that a simple neural XOR motif may provide the basis for a relevant mode of plasticity in neural circuits of living organisms.<n>This XOR motif simply signals the discrepancy between incoming signals and reference signals.<n>We examined the prevalence of the XOR motif in the published connectomes of various organisms with increasing complexity.
arXiv Detail & Related papers (2024-12-28T09:17:09Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Towards the Neuroevolution of Low-level Artificial General Intelligence [5.2611228017034435]
We argue that the search for Artificial General Intelligence (AGI) should start from a much lower level than human-level intelligence.
Our hypothesis is that learning occurs through sensory feedback when an agent acts in an environment.
We evaluate a method to evolve a biologically-inspired artificial neural network that learns from environment reactions.
arXiv Detail & Related papers (2022-07-27T15:30:50Z) - The least-control principle for learning at equilibrium [65.2998274413952]
We present a new principle for learning equilibrium recurrent neural networks, deep equilibrium models, or meta-learning.
Our results shed light on how the brain might learn and offer new ways of approaching a broad class of machine learning problems.
arXiv Detail & Related papers (2022-07-04T11:27:08Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Applications of the Free Energy Principle to Machine Learning and
Neuroscience [0.0]
We explore and apply methods inspired by the free energy principle to two important areas in machine learning and neuroscience.
We focus on predictive coding, a neurobiologically plausible process theory derived from the free energy principle.
Secondly, we study active inference, a neurobiologically grounded account of action through variational message passing.
Finally, we investigate biologically plausible methods of credit assignment in the brain.
arXiv Detail & Related papers (2021-06-30T22:53:03Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles.
This work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing.
The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities.
arXiv Detail & Related papers (2020-11-30T18:29:25Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
We propose a brain-inspired neural system based on the reentry theory using Self-Organizing Maps and Hebbian-like learning.
We show the gain of the so-called hardware plasticity induced by the ReSOM, where the system's topology is not fixed by the user but learned along the system's experience through self-organization.
arXiv Detail & Related papers (2020-04-11T21:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.