Task-Specific Data Selection for Instruction Tuning via Monosemantic Neuronal Activations
- URL: http://arxiv.org/abs/2503.15573v2
- Date: Fri, 16 May 2025 06:30:37 GMT
- Title: Task-Specific Data Selection for Instruction Tuning via Monosemantic Neuronal Activations
- Authors: Da Ma, Gonghu Shang, Zhi Chen, Libo Qin, Yijie Luo, Lei Pan, Shuai Fan, Lu Chen, Kai Yu,
- Abstract summary: A critical bottleneck is selecting the most relevant data to maximize task-specific performance.<n>Existing data selection approaches include unstable influence-based methods and more stable distribution alignment methods.<n>We introduce a dedicated similarity metric for this space to better identify task-relevant data.
- Score: 19.25205110583291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Instruction tuning improves the ability of large language models (LLMs) to follow diverse human instructions, but achieving strong performance on specific target tasks remains challenging. A critical bottleneck is selecting the most relevant data to maximize task-specific performance. Existing data selection approaches include unstable influence-based methods and more stable distribution alignment methods, the latter of which critically rely on the underlying sample representation. In practice, most distribution alignment methods, from shallow features (e.g., BM25) to neural embeddings (e.g., BGE, LLM2Vec), may fail to capture how the model internally processes samples. To bridge this gap, we adopt a model-centric strategy in which each sample is represented by its neuronal activation pattern in the model, directly reflecting internal computation. However, directly using raw neuron activations leads to spurious similarity between unrelated samples due to neuron polysemanticity, where a single neuron may respond to multiple, unrelated concepts. To address this, we employ sparse autoencoders to disentangle polysemantic activations into sparse, monosemantic representations, and introduce a dedicated similarity metric for this space to better identify task-relevant data. Comprehensive experiments across multiple instruction datasets, models, tasks, and selection ratios show that our approach consistently outperforms existing data selection baselines in both stability and task-specific performance.
Related papers
- COLLAGE: Adaptive Fusion-based Retrieval for Augmented Policy Learning [19.173177969412656]
We present COLLAGE, a method for COLLective data AGgrEgation in few-shot imitation learning.<n>Collage uses an adaptive late fusion mechanism to guide the selection of relevant demonstrations based on a task-specific combination of multiple cues.<n>Collage outperforms state-of-the-art retrieval and multi-task learning approaches by 5.1% in simulation across 10 tasks, and by 16.6% in the real world across 6 tasks.
arXiv Detail & Related papers (2025-08-02T01:23:09Z) - Investigating the Impact of Data Selection Strategies on Language Model Performance [1.0013553984400492]
This study explores the effects of different data selection methods and feature types on model performance.<n>We evaluate whether selecting data subsets can influence downstream tasks, whether n-gram features improve alignment with target distributions, and whether embedding-based neural features provide complementary benefits.
arXiv Detail & Related papers (2025-01-07T14:38:49Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.<n> Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.<n>We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - Adapt-$\infty$: Scalable Continual Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$ is a new multi-way and adaptive data selection approach for lifelong instruction tuning.<n>We construct pseudo-skill clusters by grouping gradient-based sample vectors.<n>We select the best-performing data selector for each skill cluster from a pool of selector experts.<n>This data selector samples a subset of the most important samples from each skill cluster for training.
arXiv Detail & Related papers (2024-10-14T15:48:09Z) - Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - Data curation via joint example selection further accelerates multimodal learning [3.329535792151987]
We show that jointly selecting batches of data is more effective for learning than selecting examples independently.
We derive a simple and tractable algorithm for selecting such batches, which significantly accelerate training beyond individually-prioritized data points.
arXiv Detail & Related papers (2024-06-25T16:52:37Z) - Diversified Batch Selection for Training Acceleration [68.67164304377732]
A prevalent research line, known as online batch selection, explores selecting informative subsets during the training process.
vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner.
We propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples.
arXiv Detail & Related papers (2024-06-07T12:12:20Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
We introduce a self-evolving mechanism that allows the model itself to actively sample subsets that are equally or even more effective.
The key to our data sampling technique lies in the enhancement of diversity in the chosen subsets.
Extensive experiments across three datasets and benchmarks demonstrate the effectiveness of DiverseEvol.
arXiv Detail & Related papers (2023-11-14T14:10:40Z) - A Performance-Driven Benchmark for Feature Selection in Tabular Deep
Learning [131.2910403490434]
Data scientists typically collect as many features as possible into their datasets, and even engineer new features from existing ones.
Existing benchmarks for tabular feature selection consider classical downstream models, toy synthetic datasets, or do not evaluate feature selectors on the basis of downstream performance.
We construct a challenging feature selection benchmark evaluated on downstream neural networks including transformers.
We also propose an input-gradient-based analogue of Lasso for neural networks that outperforms classical feature selection methods on challenging problems.
arXiv Detail & Related papers (2023-11-10T05:26:10Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
A desirable data selection algorithm can efficiently choose the most informative samples to maximize the utility of limited annotation budgets.
Current approaches, represented by active learning methods, typically follow a cumbersome pipeline that iterates the time-consuming model training and batch data selection repeatedly.
FreeSel bypasses the heavy batch selection process, achieving a significant improvement in efficiency and being 530x faster than existing active learning methods.
arXiv Detail & Related papers (2023-09-29T15:50:14Z) - Supervised Feature Selection with Neuron Evolution in Sparse Neural
Networks [17.12834153477201]
We propose a novel resource-efficient supervised feature selection method using sparse neural networks.
By gradually pruning the uninformative features from the input layer of a sparse neural network trained from scratch, NeuroFS derives an informative subset of features efficiently.
NeuroFS achieves the highest ranking-based score among the considered state-of-the-art supervised feature selection models.
arXiv Detail & Related papers (2023-03-10T17:09:55Z) - Graph Convolutional Network-based Feature Selection for High-dimensional
and Low-sample Size Data [4.266990593059533]
We present a deep learning-based method - GRAph Convolutional nEtwork feature Selector (GRACES) - to select important features for HDLSS data.
We demonstrate empirical evidence that GRACES outperforms other feature selection methods on both synthetic and real-world datasets.
arXiv Detail & Related papers (2022-11-25T14:46:36Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
We propose to retrieve unlabeled samples with a local sensitivity and hardness-aware acquisition function.
Our method achieves consistent gains over the commonly used active learning strategies in various classification tasks.
arXiv Detail & Related papers (2022-05-10T15:39:11Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
We consider the batch active learning problem, where only a subset of the training data is labeled.
We formulate the learning problem using constrained optimization, where each constraint bounds the performance of the model on labeled samples.
We show, via numerical experiments, that our proposed approach performs similarly to or better than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-02-08T19:18:49Z) - Optimal transport framework for efficient prototype selection [21.620708125860066]
We develop an optimal transport (OT) based framework to select informative examples that best represent a given target dataset.
We show that our objective function enjoys a key property of submodularity and propose a parallelizable greedy method that is both computationally fast and possess deterministic approximation guarantees.
arXiv Detail & Related papers (2021-03-18T10:50:14Z) - Feature Selection Based on Sparse Neural Network Layer with Normalizing
Constraints [0.0]
We propose new neural-network based feature selection approach that introduces two constrains, the satisfying of which leads to sparse FS layer.
The results confirm that proposed Feature Selection Based on Sparse Neural Network Layer with Normalizing Constraints (SNEL-FS) is able to select the important features and yields superior performance compared to other conventional FS methods.
arXiv Detail & Related papers (2020-12-11T14:14:33Z) - A Markov Decision Process Approach to Active Meta Learning [24.50189361694407]
In supervised learning, we fit a single statistical model to a given data set, assuming that the data is associated with a singular task.
In meta-learning, the data is associated with numerous tasks, and we seek a model that may perform well on all tasks simultaneously.
arXiv Detail & Related papers (2020-09-10T15:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.