論文の概要: Machine Learning Techniques for Multifactor Analysis of National Carbon Dioxide Emissions
- arxiv url: http://arxiv.org/abs/2503.15574v1
- Date: Wed, 19 Mar 2025 11:36:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 19:01:16.253515
- Title: Machine Learning Techniques for Multifactor Analysis of National Carbon Dioxide Emissions
- Title(参考訳): 国家二酸化炭素排出量の多要素分析のための機械学習技術
- Authors: Wenjia Xie, Jinhui Li, Kai Zong, Luis Seco,
- Abstract要約: この研究は、二酸化炭素排出量に寄与する要因を理解し、最も予測可能な要素を特定することを目的としている。
この分析は、多種多様な国家軌跡を浮き彫りにした、国内固有の排出量推定を提供する。
この研究は、二酸化炭素排出量の正確な表現による政策立案を支援することを目的としている。
- 参考スコア(独自算出の注目度): 0.46873264197900916
- License:
- Abstract: This paper presents a comprehensive study leveraging Support Vector Machine (SVM) regression and Principal Component Regression (PCR) to analyze carbon dioxide emissions in a global dataset of 62 countries and their dependence on idiosyncratic, country-specific parameters. The objective is to understand the factors contributing to carbon dioxide emissions and identify the most predictive elements. The analysis provides country-specific emission estimates, highlighting diverse national trajectories and pinpointing areas for targeted interventions in climate change mitigation, sustainable development, and the growing carbon credit markets and green finance sector. The study aims to support policymaking with accurate representations of carbon dioxide emissions, offering nuanced information for formulating effective strategies to address climate change while informing initiatives related to carbon trading and environmentally sustainable investments.
- Abstract(参考訳): 本稿では,サポートベクトルマシン(SVM)レグレッションとプリンシパル・コンポーネント・レグレッション(PCR)を利用して,62カ国のグローバルデータセットにおける二酸化炭素排出量の分析と,その慣用的,国固有のパラメータへの依存性を総合的に検討する。
目的は、二酸化炭素排出に寄与する要因を理解し、最も予測可能な要素を特定することである。
この分析は、気候変動の緩和、持続可能な開発、成長を続ける炭素信用市場とグリーンファイナンスセクターの介入を目標とした、多様な国家軌道とピインポインティング領域を浮き彫りにした、国内固有の排出予測を提供する。
この研究は、二酸化炭素排出量の正確な表現による政策立案を支援することを目的としており、気候変動に対処するための効果的な戦略を策定する上で、炭素取引や環境に持続可能な投資に関するイニシアティブを伝えながら、曖昧な情報を提供することを目的としている。
関連論文リスト
- CarbonChat: Large Language Model-Based Corporate Carbon Emission Analysis and Climate Knowledge Q&A System [4.008184902967172]
大規模言語モデルに基づくコーポレートカーボンエミッション分析と気候知識Q&Aシステムを提案する。
ルールベースおよび長文文書のセグメンテーションを扱うために,多種多様なインデックスモジュール構築法を提案する。
炭素排出量分析のための14の次元が確立されており、レポートの要約、関連性評価、カスタマイズされた応答を可能にしている。
論文 参考訳(メタデータ) (2025-01-03T08:45:38Z) - Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
炭素市場(英: carbon market)は、個人の利益をグローバルユーティリティーと整合させる経済エージェントをインセンティブとする、市場ベースのツールである。
階層型モデルフリーマルチエージェント強化学習(MARL)を用いて市場をシミュレートする適応機構設計フレームワークを提案する。
MARLは、政府エージェントが生産性、平等、二酸化炭素排出のバランスをとることができることを示している。
論文 参考訳(メタデータ) (2024-06-12T05:08:51Z) - A Comprehensive Approach to Carbon Dioxide Emission Analysis in High Human Development Index Countries using Statistical and Machine Learning Techniques [4.106914713812204]
世界規模の二酸化炭素排出量を効果的に削減するためには、二酸化炭素排出量の傾向を予測し、その排出量パターンに基づいて国を分類することが不可欠だ」と述べた。
本稿では,HDI(Human Development Index)を有する20カ国におけるCO2排出量の決定要因について,25年間にわたる経済,環境,エネルギー利用,再生可能資源に関連する要因について,詳細な比較研究を行った。
論文 参考訳(メタデータ) (2024-05-01T21:00:02Z) - Emissions Reporting Maturity Model: supporting cities to leverage
emissions-related processes through performance indicators and artificial
intelligence [0.0]
本研究は,排出報告イニシアチブからのデータの調査,クラスタリング,分析を行うための排出報告成熟度モデル(ERMM)を提案する。
PIDPは,エミッション関連データベースからのデータ作成,クラスタリング手法の異なる類似性によるデータの分類,パフォーマンス指標候補の同定を支援する。
論文 参考訳(メタデータ) (2023-12-08T17:51:57Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
2021年現在、世界中で約8億8800万人が飢餓と栄養失調に見舞われている。
気候変動は農地の適性に大きな影響を及ぼし、深刻な食糧不足に繋がる可能性がある。
本研究は,経済・社会問題に苦しむ中央ユーラシアを対象とする。
論文 参考訳(メタデータ) (2023-10-24T15:15:28Z) - Multicollinearity Resolution Based on Machine Learning: A Case Study of Carbon Emissions [0.588718946589364]
本研究では,DBSCANクラスタリングとペナル化回帰モデルを用いた一般的な分析フレームワークを提案する。
この枠組みを適用して2000年から2019年までの46の産業のエネルギー消費データを分析した結果、中国では16のカテゴリーが特定された。
論文 参考訳(メタデータ) (2023-09-03T08:08:59Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
機械学習(ML)は、モデルトレーニングプロセス中に計算を実行するためにエネルギーを使用する必要がある。
このエネルギーの生成には、使用量やエネルギー源によって、温室効果ガスの排出という観点からの環境コストが伴う。
本稿では,自然言語処理とコンピュータビジョンにおいて,95のMLモデルの炭素排出量の時間的および異なるタスクに関する調査を行う。
論文 参考訳(メタデータ) (2023-02-16T18:35:00Z) - Carbon Emission Prediction on the World Bank Dataset for Canada [0.9256577986166795]
本稿では,今後数年間の二酸化炭素排出量(CO2排出量)の予測方法について述べる。
この予測は過去50年間のデータに基づいている。
このデータセットには1960年から2018年までの全国のCO2排出量(一人当たりメートル)が含まれている。
論文 参考訳(メタデータ) (2022-11-26T07:04:52Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
176ビリオンパラメータ言語モデルBLOOMの炭素フットプリントを,そのライフサイクルにわたって定量化する。
BLOOMの最終訓練で約24.7トンのカルボネックが放出されたと推定する。
本稿では,機械学習モデルの炭素フットプリントを正確に推定することの難しさについて論じる。
論文 参考訳(メタデータ) (2022-11-03T17:13:48Z) - (Private)-Retroactive Carbon Pricing [(P)ReCaP]: A Market-based Approach
for Climate Finance and Risk Assessment [64.83786252406105]
Retrospective Social Cost of Carbon Updating (ReSCCU) は、実験的に測定された証拠を収集して制限を補正する新しいメカニズムである。
炭素税の文脈でReSCCUを実装するために,Retroactive Carbon Pricing (ReCaP)を提案する。
組織的リスクを緩和し、政府の関与を最小限に抑えるため、我々はPrivate ReCaP(Private ReCaP)予測市場を導入する。
論文 参考訳(メタデータ) (2022-05-02T06:02:13Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
近年、企業は環境への影響を緩和し、気候変動の状況に適応することを目指している。
これは、環境・社会・ガバナンス(ESG)の傘下にある様々な種類の気候リスクと暴露を網羅する、ますます徹底した報告を通じて報告されている。
本稿では,本稿で開発したツールと方法論について紹介する。
論文 参考訳(メタデータ) (2020-11-03T21:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。