UAS Visual Navigation in Large and Unseen Environments via a Meta Agent
- URL: http://arxiv.org/abs/2503.15781v1
- Date: Thu, 20 Mar 2025 01:44:59 GMT
- Title: UAS Visual Navigation in Large and Unseen Environments via a Meta Agent
- Authors: Yuci Han, Charles Toth, Alper Yilmaz,
- Abstract summary: We propose a meta-curriculum training scheme to efficiently learn to navigate in large-scale urban environments.<n>We organize the training curriculum in a hierarchical manner such that the agent is guided from coarse to fine towards the target task.<n>In contrast to traditional reinforcement learning (RL), which focuses on acquiring a policy for a specific task, MRL aims to learn a policy with fast transfer ability to novel tasks.
- Score: 0.13654846342364302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aim of this work is to develop an approach that enables Unmanned Aerial System (UAS) to efficiently learn to navigate in large-scale urban environments and transfer their acquired expertise to novel environments. To achieve this, we propose a meta-curriculum training scheme. First, meta-training allows the agent to learn a master policy to generalize across tasks. The resulting model is then fine-tuned on the downstream tasks. We organize the training curriculum in a hierarchical manner such that the agent is guided from coarse to fine towards the target task. In addition, we introduce Incremental Self-Adaptive Reinforcement learning (ISAR), an algorithm that combines the ideas of incremental learning and meta-reinforcement learning (MRL). In contrast to traditional reinforcement learning (RL), which focuses on acquiring a policy for a specific task, MRL aims to learn a policy with fast transfer ability to novel tasks. However, the MRL training process is time consuming, whereas our proposed ISAR algorithm achieves faster convergence than the conventional MRL algorithm. We evaluate the proposed methodologies in simulated environments and demonstrate that using this training philosophy in conjunction with the ISAR algorithm significantly improves the convergence speed for navigation in large-scale cities and the adaptation proficiency in novel environments.
Related papers
- Multi-agent Path Finding for Timed Tasks using Evolutionary Games [1.3023548510259344]
We show that our algorithm is faster than deep RL methods by at least an order of magnitude.
Our results indicate that it scales better with an increase in the number of agents as compared to other methods.
arXiv Detail & Related papers (2024-11-15T20:10:25Z) - A Method for Fast Autonomy Transfer in Reinforcement Learning [3.8049020806504967]
This paper introduces a novel reinforcement learning (RL) strategy designed to facilitate rapid autonomy transfer.
Unlike traditional methods that require extensive retraining or fine-tuning, our approach integrates existing knowledge, enabling an RL agent to adapt swiftly to new settings.
arXiv Detail & Related papers (2024-07-29T23:48:07Z) - Mission-driven Exploration for Accelerated Deep Reinforcement Learning with Temporal Logic Task Specifications [11.010530034121224]
We introduce a novel Deep Q-learning algorithm that significantly improves learning speed.
The enhanced sample efficiency stems from a mission-driven exploration strategy that prioritizes exploration towards directions likely to contribute to mission success.
arXiv Detail & Related papers (2023-11-28T18:59:58Z) - Efficient Meta Reinforcement Learning for Preference-based Fast
Adaptation [17.165083095799712]
We study the problem of few-shot adaptation in the context of human-in-the-loop reinforcement learning.
We develop a meta-RL algorithm that enables fast policy adaptation with preference-based feedback.
arXiv Detail & Related papers (2022-11-20T03:55:09Z) - Meta Reinforcement Learning with Successor Feature Based Context [51.35452583759734]
We propose a novel meta-RL approach that achieves competitive performance comparing to existing meta-RL algorithms.
Our method does not only learn high-quality policies for multiple tasks simultaneously but also can quickly adapt to new tasks with a small amount of training.
arXiv Detail & Related papers (2022-07-29T14:52:47Z) - Learning Action Translator for Meta Reinforcement Learning on
Sparse-Reward Tasks [56.63855534940827]
This work introduces a novel objective function to learn an action translator among training tasks.
We theoretically verify that the value of the transferred policy with the action translator can be close to the value of the source policy.
We propose to combine the action translator with context-based meta-RL algorithms for better data collection and more efficient exploration during meta-training.
arXiv Detail & Related papers (2022-07-19T04:58:06Z) - On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning [71.55412580325743]
We show that multi-task pretraining with fine-tuning on new tasks performs equally as well, or better, than meta-pretraining with meta test-time adaptation.
This is encouraging for future research, as multi-task pretraining tends to be simpler and computationally cheaper than meta-RL.
arXiv Detail & Related papers (2022-06-07T13:24:00Z) - Lean Evolutionary Reinforcement Learning by Multitasking with Importance
Sampling [20.9680985132322]
We introduce a novel neuroevolutionary multitasking (NuEMT) algorithm to transfer information from a set of auxiliary tasks to the target (full length) RL task.
We demonstrate that the NuEMT algorithm data-lean evolutionary RL, reducing expensive agent-environment interaction data requirements.
arXiv Detail & Related papers (2022-03-21T10:06:16Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Meta-Reinforcement Learning in Broad and Non-Parametric Environments [8.091658684517103]
We introduce TIGR, a Task-Inference-based meta-RL algorithm for tasks in non-parametric environments.
We decouple the policy training from the task-inference learning and efficiently train the inference mechanism on the basis of an unsupervised reconstruction objective.
We provide a benchmark with qualitatively distinct tasks based on the half-cheetah environment and demonstrate the superior performance of TIGR compared to state-of-the-art meta-RL approaches.
arXiv Detail & Related papers (2021-08-08T19:32:44Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.