論文の概要: Data Spatial Programming
- arxiv url: http://arxiv.org/abs/2503.15812v1
- Date: Thu, 20 Mar 2025 02:55:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:34:35.570729
- Title: Data Spatial Programming
- Title(参考訳): データ空間プログラミング
- Authors: Jason Mars,
- Abstract要約: オブジェクト指向プログラミング(OOP)のセマンティクスを拡張する新しいプログラミングモデルであるデータ空間プログラミングを導入する。
空間におけるデータ要素間の関係を形式化することにより、我々のアプローチは複雑なシステムのより直感的なモデリングを可能にする。
このパラダイムは、動的に進化するネットワーク、エージェントベースのシステム、その他の空間指向の計算問題を表現する際に、従来のOOPの制限に対処する。
- 参考スコア(独自算出の注目度): 2.8374498376407877
- License:
- Abstract: We introduce a novel programming model, Data Spatial Programming, which extends the semantics of Object-Oriented Programming (OOP) by introducing new class-like constructs called archetypes. These archetypes encapsulate spatial relationships between data entities and execution flow in a structured manner, enabling more expressive and semantically rich computations over interconnected data structures. By formalizing the relationships between data elements in space, our approach allows for more intuitive modeling of complex systems where the topology of connections is essential to the underlying computational model. This paradigm addresses limitations in traditional OOP when representing dynamically evolving networks, agent-based systems, and other spatially-oriented computational problems.
- Abstract(参考訳): 本稿では,オブジェクト指向プログラミング(OOP)のセマンティクスを拡張した新しいプログラミングモデルであるデータ空間プログラミングを紹介する。
これらのアーキタイプは、データエンティティと実行フローの間の空間的関係を構造化された方法でカプセル化し、相互接続されたデータ構造に対してより表現的かつ意味的にリッチな計算を可能にする。
空間におけるデータ要素間の関係を形式化することにより、我々のアプローチは、基礎となる計算モデルに接続のトポロジが不可欠である複雑なシステムのより直感的なモデリングを可能にする。
このパラダイムは、動的に進化するネットワーク、エージェントベースのシステム、その他の空間指向の計算問題を表現する際に、従来のOOPの制限に対処する。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Topological Deep Learning with State-Space Models: A Mamba Approach for Simplicial Complexes [4.787059527893628]
本稿では,Mamba状態空間モデルをバックボーンとして利用して,単純な複素数を扱うように設計された新しいアーキテクチャを提案する。
提案手法は, 隣接セルをベースとしたノードのシーケンスを生成し, ランクに関わらず, 上位構造間の直接通信を可能にする。
論文 参考訳(メタデータ) (2024-09-18T14:49:25Z) - Redefining Data-Centric Design: A New Approach with a Domain Model and Core Data Ontology for Computational Systems [2.872069347343959]
本稿では,新しい情報ドメインモデルを導入することにより,計算システムを設計するための革新的なデータ中心パラダイムを提案する。
提案モデルは従来のノード中心のフレームワークから離れ、オブジェクト、イベント、コンセプト、アクションを組み込んだマルチモーダルアプローチを使用して、データ中心の分類に焦点を当てている。
論文 参考訳(メタデータ) (2024-09-01T22:34:12Z) - On Linearizing Structured Data in Encoder-Decoder Language Models: Insights from Text-to-SQL [8.57550491437633]
本研究では,エンコーダ-デコーダ言語モデル,特にT5における構造化データの線形処理について検討する。
この結果から,スキーマリンクや構文予測など,人間設計プロセスの模倣が可能であることが判明した。
また、構造ノードエンコーディングのエゴ中心の性質を含む、モデルの内部メカニズムに関する洞察を明らかにした。
論文 参考訳(メタデータ) (2024-04-03T01:16:20Z) - Unpacking Human-AI interactions: From interaction primitives to a design
space [6.778055454461106]
これらのプリミティブを相互作用パターンの集合にどのように組み合わせるかを示す。
この背景にある動機は、既存のプラクティスのコンパクトな一般化を提供することである。
我々は,人間-AIインタラクションの設計空間に対して,このアプローチをどのように利用できるかについて議論する。
論文 参考訳(メタデータ) (2024-01-10T12:27:18Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
リレーショナルデータ上での深層学習(DL)モデルの実現は、様々な商業分野や科学分野において重要な要件となっている。
最先端のDL中心アーキテクチャは、DL計算を専用のDLフレームワークにオフロードします。
UDF中心アーキテクチャの可能性は、リレーショナルデータベース管理システム(RDBMS)内の1つ以上のテンソル計算をユーザ定義関数(UDF)にカプセル化する。
論文 参考訳(メタデータ) (2023-10-07T06:01:35Z) - PDSketch: Integrated Planning Domain Programming and Learning [86.07442931141637]
我々は PDSketch という新しいドメイン定義言語を提案する。
これにより、ユーザーはトランジションモデルで柔軟にハイレベルな構造を定義できる。
移行モデルの詳細は、トレーニング可能なニューラルネットワークによって満たされる。
論文 参考訳(メタデータ) (2023-03-09T18:54:12Z) - CateCom: a practical data-centric approach to categorization of
computational models [77.34726150561087]
本稿では,物理モデルとデータ駆動型計算モデルのランドスケープを整理する取り組みについて述べる。
オブジェクト指向設計の概念を適用し、オープンソース協調フレームワークの基礎を概説する。
論文 参考訳(メタデータ) (2021-09-28T02:59:40Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
本研究では,分散ネットワーク構造を持つローカルデータセットの局所的(あるいはパーソナライズされた)モデルを学習するための最適化手法について検討する。
我々の主要な概念的貢献は、総変動最小化(GTV)としてフェデレーション学習を定式化することである。
私たちのアルゴリズムの主な貢献は、完全に分散化されたフェデレーション学習アルゴリズムです。
論文 参考訳(メタデータ) (2021-05-26T18:07:19Z) - Learning to Synthesize Data for Semantic Parsing [57.190817162674875]
本稿では,プログラムの構成をモデル化し,プログラムを発話にマップする生成モデルを提案する。
PCFGと事前学習されたBARTの簡易性により,既存のデータから効率的に生成モデルを学習することができる。
GeoQuery と Spider の標準ベンチマークで解析する text-to-Query の in-domain と out-of-domain の両方で、この手法を評価します。
論文 参考訳(メタデータ) (2021-04-12T21:24:02Z) - Multifaceted Context Representation using Dual Attention for Ontology
Alignment [6.445605125467574]
オントロジーアライメントは、データ統合、データ転送、データ準備など、さまざまな分野に適用できる重要な研究課題である。
We propose VeeAlign, a Deep Learning based model that using a dual-attention mechanism to compute the contextualized representation of a concept to learn alignments。
我々は、異なるドメインや多言語設定の様々なデータセットに対するアプローチを検証するとともに、SOTA法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-10-16T18:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。