論文の概要: Adaptive Group Policy Optimization: Towards Stable Training and Token-Efficient Reasoning
- arxiv url: http://arxiv.org/abs/2503.15952v1
- Date: Thu, 20 Mar 2025 08:48:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:34:46.948965
- Title: Adaptive Group Policy Optimization: Towards Stable Training and Token-Efficient Reasoning
- Title(参考訳): 適応型グループ政策最適化 : 安定トレーニングとトークン効率推論を目指して
- Authors: Chen Li, Nazhou Liu, Kai Yang,
- Abstract要約: 本稿では,2つの単純かつ効果的な修正を含む適応グループ政策最適化(AGPO)を提案する。
実験により,本手法は推論ステップにおいてトークンを著しく少なく,より安定したトレーニングと同等あるいは優れたパフォーマンスを実現することが実証された。
- 参考スコア(独自算出の注目度): 4.325768677318839
- License:
- Abstract: Since DeepSeek-R1 popularized, Group Relative Policy Optimization (GRPO) has become the core part of Reasoning LLMs training. However, we find some deficiency that influences RL stability and inference efficiency. Thus, we propose Adaptive Group Policy Optimization (AGPO) which contains two simple but effective modifications: a revised advantage estimation method to mitigate zero-variance situations; a length-based reward, incentivizing the model to avoid overthinking. The experiments demonstrate our methods achieve more stable training and comparable or superior performance with significantly fewer tokens in reasoning steps.
- Abstract(参考訳): DeepSeek-R1が普及して以来、グループ相対政策最適化(GRPO)がLLMトレーニングの中心となっている。
しかし、RLの安定性と推論効率に影響を及ぼすいくつかの欠陥がある。
そこで本稿では,ゼロ分散を緩和する改良された優位性推定手法であるAdaptive Group Policy Optimization (AGPO)を提案する。
実験により,本手法は推論ステップにおいてトークンを著しく少なく,より安定したトレーニングと同等あるいは優れたパフォーマンスを実現することが実証された。
関連論文リスト
- Teaching LLMs to Refine with Tools [68.23479664749271]
大規模言語モデル(LLM)はフィードバックに基づいて応答を洗練し、反復的なトレーニングやテスト時間の改良を通じて自己改善を可能にする。
外部ツールを用いて同一または他のLLMによって生成されたチェーン・オブ・シント(CoT)応答を洗練するための新しいアプローチであるCaPを提案する。
論文 参考訳(メタデータ) (2024-12-22T05:43:50Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
我々は、報酬モデルとポリシーをトレーニングするために、AIHF(Alignment with Integrated Human Feedback)と呼ばれる単一ステージアプローチを開発する。
提案した手法は、一般的なアライメントアルゴリズムに容易に還元し、活用できる、効率的なアルゴリズムの集合を認めている。
本研究では,LLMにおけるアライメント問題と,MuJoCoにおけるロボット制御問題を含む広範な実験により,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-11T01:20:53Z) - Group Robust Preference Optimization in Reward-free RLHF [23.622835830345725]
そこで本研究では,大規模言語モデルと各グループの嗜好を密に整合させる新しいグループロバスト選好最適化法を提案する。
これを達成するため、GRPOは異なるグループの重要性を適応的かつ順次重み付けし、累積損失が悪化したグループを優先順位付けする。
我々は,最悪のパフォーマンス群の性能向上,グループ間の損失不均衡の低減,確率精度の向上について検討した。
論文 参考訳(メタデータ) (2024-05-30T17:50:04Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Policy Gradient with Active Importance Sampling [55.112959067035916]
政策勾配法(PG法)はISの利点を大いに生かし、以前に収集したサンプルを効果的に再利用することができる。
しかし、ISは歴史的サンプルを再重み付けするための受動的ツールとしてRLに採用されている。
我々は、政策勾配のばらつきを減らすために、サンプルを収集する最良の行動ポリシーを模索する。
論文 参考訳(メタデータ) (2024-05-09T09:08:09Z) - DPO: Differential reinforcement learning with application to optimal configuration search [3.2857981869020327]
連続状態と行動空間による強化学習は、この分野における最も困難な問題の1つである。
限られたトレーニングサンプルと短いエピソードで設定を処理できる最初の微分RLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-24T03:11:12Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
本稿では,この問題を解決するために,事前制約に基づくリワードモデル(PCRM)のトレーニング手法を提案する。
PCRMは、前回の制約、特に各比較ペアの出力間の長さ比とコサイン類似性を、最適化の規模を調節しスコアマージンを制御するための報酬モデルトレーニングに組み入れている。
実験結果から,PCRMは報酬スコアのスケーリングを効果的に抑制することによりアライメント性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-01T07:49:11Z) - Clipped-Objective Policy Gradients for Pessimistic Policy Optimization [3.2996723916635275]
政策勾配法は、政策出力の有界変化を通じて単調な改善を図っている。
本研究では,PPOの性能を連続的な作用空間に適用した場合,目的の単純変化によって一貫した改善が期待できることを示す。
PPO と PPO の両目標に比較して, COPG の目標が平均的な「悲観的」であること, 2) この悲観主義は探索を促進させることを示した。
論文 参考訳(メタデータ) (2023-11-10T03:02:49Z) - Off-policy Reinforcement Learning with Optimistic Exploration and
Distribution Correction [73.77593805292194]
我々は、政治以外のアクター批判的枠組みにおいて、批評家のほぼ上位信頼度を最大化するために、別の調査政策を訓練する。
最近導入されたDICEフレームワークを応用して、非政治アクター犯罪訓練のための分布補正比を学習する。
論文 参考訳(メタデータ) (2021-10-22T22:07:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。