論文の概要: Adaptive Group Policy Optimization: Towards Stable Training and Token-Efficient Reasoning
- arxiv url: http://arxiv.org/abs/2503.15952v2
- Date: Wed, 21 May 2025 08:54:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:57.918662
- Title: Adaptive Group Policy Optimization: Towards Stable Training and Token-Efficient Reasoning
- Title(参考訳): 適応型グループ政策最適化 : 安定トレーニングとトークン効率推論を目指して
- Authors: Chen Li, Nazhou Liu, Kai Yang,
- Abstract要約: 本稿では,ゆらぎ学習とゼロ・アドバンテージを緩和する目的関数を改良したAdaptive Group Policy Optimization (AGPO)を提案する。
実験により,提案手法は推論ステップにおけるトークンを著しく少なくして,より安定した訓練と優れた性能を実現することを示す。
- 参考スコア(独自算出の注目度): 4.325768677318839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since DeepSeek-R1 popularized, Group Relative Policy Optimization (GRPO) has become the core part of training Reasoning LLMs. However, we find some deficiency that influences RL stability and inference efficiency, like zero-variance in advantage estimation. Thus, we propose Adaptive Group Policy Optimization (AGPO) which contains a simple but effective modification: a revised objective function to mitigate training fluctuation and zero advantage. The experiments demonstrate our method achieves more stable training and superior performance with significantly fewer tokens in reasoning steps.
- Abstract(参考訳): DeepSeek-R1 が普及して以来、グループ相対政策最適化 (GRPO) が Reasoning LLM のトレーニングの中心となっている。
しかし,RLの安定性や推定効率に影響を及ぼす欠点がいくつか見出される。
そこで本研究では,適応グループ政策最適化 (AGPO) を提案する。
実験により,提案手法は推論ステップにおけるトークンを著しく少なくして,より安定した訓練と優れた性能を達成できることを示した。
関連論文リスト
- GVPO: Group Variance Policy Optimization for Large Language Model Post-Training [18.431007107428574]
群変数ポリシー最適化(GVPO)は、KL制約された報酬を直接重みに含める分析解である。
GVPOには2つの大きな利点がある: ユニークな最適解、正確にはKL制約の報酬目的、および柔軟なサンプリング分布をサポートする。
GVPOは、理論的な保証を実用的適応性で統一することにより、信頼性と汎用性を備えたLLMポストトレーニングのための新しいパラダイムを確立する。
論文 参考訳(メタデータ) (2025-04-28T09:02:24Z) - A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce [68.99924691391048]
我々はGRPOを強化的なアルゴリズムの観点から再検討し、そのコアコンポーネントを分析する。
単純な拒絶サンプリングベースラインであるRAFTは,GRPOやPPOよりも競争性能が高いことがわかった。
この知見に触発されて、完全に正しくないサンプルと完全に正しいサンプルの両方をフィルタリングするポリシー勾配の最小限の拡張であるReinforce-Rejを提案する。
論文 参考訳(メタデータ) (2025-04-15T16:15:02Z) - Fast Adaptation with Behavioral Foundation Models [82.34700481726951]
教師なしゼロショット強化学習は、行動基礎モデルの事前学習のための強力なパラダイムとして登場した。
有望な結果にもかかわらず、ゼロショットポリシーは、教師なしのトレーニングプロセスによって引き起こされるエラーにより、しばしば準最適である。
本稿では,事前訓練されたBFMの低次元タスク埋め込み空間を探索し,ゼロショットポリシーの性能を急速に向上させる高速適応手法を提案する。
論文 参考訳(メタデータ) (2025-04-10T16:14:17Z) - PEO: Improving Bi-Factorial Preference Alignment with Post-Training Policy Extrapolation [5.347428263669927]
ポストトレーニング外挿最適化(PEO)は、二要素アライメントのための新しく効率的なフレームワークである。
PEOは3相パイプラインを利用して、1つのトレーニングパスで最適なポリシーのファミリーを生成する。
論文 参考訳(メタデータ) (2025-03-03T06:56:39Z) - Teaching LLMs to Refine with Tools [68.23479664749271]
大規模言語モデル(LLM)はフィードバックに基づいて応答を洗練し、反復的なトレーニングやテスト時間の改良を通じて自己改善を可能にする。
外部ツールを用いて同一または他のLLMによって生成されたチェーン・オブ・シント(CoT)応答を洗練するための新しいアプローチであるCaPを提案する。
論文 参考訳(メタデータ) (2024-12-22T05:43:50Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
我々は、報酬モデルとポリシーをトレーニングするために、AIHF(Alignment with Integrated Human Feedback)と呼ばれる単一ステージアプローチを開発する。
提案した手法は、一般的なアライメントアルゴリズムに容易に還元し、活用できる、効率的なアルゴリズムの集合を認めている。
本研究では,LLMにおけるアライメント問題と,MuJoCoにおけるロボット制御問題を含む広範な実験により,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-11T01:20:53Z) - Group Robust Preference Optimization in Reward-free RLHF [23.622835830345725]
そこで本研究では,大規模言語モデルと各グループの嗜好を密に整合させる新しいグループロバスト選好最適化法を提案する。
これを達成するため、GRPOは異なるグループの重要性を適応的かつ順次重み付けし、累積損失が悪化したグループを優先順位付けする。
我々は,最悪のパフォーマンス群の性能向上,グループ間の損失不均衡の低減,確率精度の向上について検討した。
論文 参考訳(メタデータ) (2024-05-30T17:50:04Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - DPO: Differential reinforcement learning with application to optimal configuration search [3.2857981869020327]
連続状態と行動空間による強化学習は、この分野における最も困難な問題の1つである。
限られたトレーニングサンプルと短いエピソードで設定を処理できる最初の微分RLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-24T03:11:12Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
本稿では,この問題を解決するために,事前制約に基づくリワードモデル(PCRM)のトレーニング手法を提案する。
PCRMは、前回の制約、特に各比較ペアの出力間の長さ比とコサイン類似性を、最適化の規模を調節しスコアマージンを制御するための報酬モデルトレーニングに組み入れている。
実験結果から,PCRMは報酬スコアのスケーリングを効果的に抑制することによりアライメント性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-01T07:49:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。