論文の概要: GAN-enhanced Simulation-driven DNN Testing in Absence of Ground Truth
- arxiv url: http://arxiv.org/abs/2503.15953v1
- Date: Thu, 20 Mar 2025 08:49:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:36:00.915926
- Title: GAN-enhanced Simulation-driven DNN Testing in Absence of Ground Truth
- Title(参考訳): GAN強化シミュレーション駆動型DNN探傷試験
- Authors: Mohammed Attaoui, Fabrizio Pastore,
- Abstract要約: シミュレーションによる合成入力の生成は、安全クリティカルシステムのためのディープニューラルネットワーク(DNN)コンポーネントの費用対効果テストに不可欠である。
多くのアプリケーションにおいて、シミュレーターは自動テストオラクルに必要な地平線データを生成することができない。
本稿では,計算機ビジョンのDNNに対して,シミュレータの忠実性を確保するために生成ネットワークを統合した入力生成手法を提案する。
- 参考スコア(独自算出の注目度): 2.900522306460408
- License:
- Abstract: The generation of synthetic inputs via simulators driven by search algorithms is essential for cost-effective testing of Deep Neural Network (DNN) components for safety-critical systems. However, in many applications, simulators are unable to produce the ground-truth data needed for automated test oracles and to guide the search process. To tackle this issue, we propose an approach for the generation of inputs for computer vision DNNs that integrates a generative network to ensure simulator fidelity and employs heuristic-based search fitnesses that leverage transformation consistency, noise resistance, surprise adequacy, and uncertainty estimation. We compare the performance of our fitnesses with that of a traditional fitness function leveraging ground truth; further, we assess how the integration of a GAN not leveraging the ground truth impacts on test and retraining effectiveness. Our results suggest that leveraging transformation consistency is the best option to generate inputs for both DNN testing and retraining; it maximizes input diversity, spots the inputs leading to worse DNN performance, and leads to best DNN performance after retraining. Besides enabling simulator-based testing in the absence of ground truth, our findings pave the way for testing solutions that replace costly simulators with diffusion and large language models, which might be more affordable than simulators, but cannot generate ground-truth data.
- Abstract(参考訳): 探索アルゴリズムによって駆動されるシミュレータによる合成入力の生成は、安全クリティカルシステムのためのDeep Neural Network (DNN) コンポーネントの費用対効果テストに不可欠である。
しかし、多くのアプリケーションにおいて、シミュレーターは自動オーラクルや探索プロセスのガイドに必要な地平線データを生成することができない。
この問題に対処するために,コンピュータビジョンDNNの入力生成手法を提案する。この手法は,生成ネットワークを統合してシミュレータの忠実性を保証し,変換整合性,耐雑音性,サプライズ精度,不確実性推定といったヒューリスティックな検索適合性を利用する。
また,本研究は,基礎的真理を生かした従来のフィットネス機能と比較し,基礎的真理を生かしていないGANの統合が,テストと再トレーニングの効果にどのように影響するかを評価する。
この結果から,DNNテストと再トレーニングの両方において,変換の整合性を活用することが,入力の多様性を最大化し,DNNのパフォーマンスが悪化し,再トレーニング後の最高のDNN性能につながることが示唆された。
本研究は,地中真実を欠くシミュレータベースのテストを可能にすることに加えて,コストの高いシミュレータを拡散モデルや大規模言語モデルに置き換えるテストソリューションの道を開いた。
関連論文リスト
- Feasibility Study on Active Learning of Smart Surrogates for Scientific Simulations [4.368891765870579]
深層ニューラルネットワーク(DNN)のサロゲートトレーニングにアクティブラーニングを組み込むことの可能性を検討する。
これにより、インテリジェントで客観的なトレーニングシミュレーションの選択が可能になり、広範なシミュレーションデータを生成する必要がなくなる。
その結果、スマートサロゲートのための高性能コンピューティング基盤の開発の基礎となった。
論文 参考訳(メタデータ) (2024-07-10T14:00:20Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Adversarial training with informed data selection [53.19381941131439]
アドリアリトレーニングは、これらの悪意のある攻撃からネットワークを守るための最も効率的なソリューションである。
本研究では,ミニバッチ学習に適用すべきデータ選択戦略を提案する。
シミュレーションの結果,ロバスト性および標準精度に関して良好な妥協が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-07T12:09:50Z) - Meta Input: How to Leverage Off-the-Shelf Deep Neural Networks [29.975937981538664]
我々は、エンドユーザーがモデルを変更することなく、独自のテスト環境で事前訓練されたDNNモデルを活用できる新しいアプローチを導入する。
テストデータの分布をトレーニングデータと整合させる追加入力であるtextitmeta 入力を提案する。
その結果、エンドユーザは、トレーニング環境と異なるテスト環境で、よく訓練されたモデルを利用することができる。
論文 参考訳(メタデータ) (2022-10-21T02:11:38Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNは、実数値重みとスケールファクターの内在的双線型関係を無視している。
私たちの仕事は、双線形の観点からBNNを最適化する最初の試みです。
我々は、様々なモデルやデータセット上で最先端のBNNに対して印象的な性能を示す頑健なRBONNを得る。
論文 参考訳(メタデータ) (2022-09-04T06:45:33Z) - Testing Feedforward Neural Networks Training Programs [13.249453757295083]
ディープニューラルネットワークの動作の不整合を露呈するテストケースを生成するために、複数のテスト技術が提案されている。
これらのテクニックは、トレーニングプログラムがバグフリーで適切に設定されていることを暗黙的に仮定する。
本稿では,DNNトレーニングプログラムのエンドツーエンドなプロパティベースのデバッグ手法であるTheDeepCheckerを提案する。
論文 参考訳(メタデータ) (2022-04-01T20:49:14Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - Distribution-Aware Testing of Neural Networks Using Generative Models [5.618419134365903]
ディープニューラルネットワーク(DNN)をコンポーネントとして持つソフトウェアの信頼性は、緊急に重要である。
最近の3つのテスト手法が, かなりの数の不正なテスト入力を生成することを示す。
テスト生成プロセスにおいて,テスト中のDNNモデルの有効な入力空間を組み込む手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T17:18:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。