Quantum Chebyshev Probabilistic Models for Fragmentation Functions
- URL: http://arxiv.org/abs/2503.16073v1
- Date: Thu, 20 Mar 2025 12:09:44 GMT
- Title: Quantum Chebyshev Probabilistic Models for Fragmentation Functions
- Authors: Jorge J. Martínez de Lejarza, Hsin-Yu Wu, Oleksandr Kyriienko, Germán Rodrigo, Michele Grossi,
- Abstract summary: We study fragmentation functions(FFs) of charged pions and kaons from single-inclusive hadron annihilation in electron-positron.<n>Our results highlight the growing potential of quantum generative modeling for addressing problems in scientific discovery and advancing data analysis in high-energy physics.
- Score: 14.379311972506791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a quantum protocol for efficiently learning and sampling multivariate probability distributions that commonly appear in high-energy physics. Our approach introduces a bivariate probabilistic model based on generalized Chebyshev polynomials, which is (pre-)trained as an explicit circuit-based model for two correlated variables, and sampled efficiently with the use of quantum Chebyshev transforms. As a key application, we study the fragmentation functions~(FFs) of charged pions and kaons from single-inclusive hadron production in electron-positron annihilation. We learn the joint distribution for the momentum fraction $z$ and energy scale $Q$ in several fragmentation processes. Using the trained model, we infer the correlations between $z$ and $Q$ from the entanglement of the probabilistic model, noting that the developed energy-momentum correlations improve model performance. Furthermore, utilizing the generalization capabilities of the quantum Chebyshev model and extended register architecture, we perform a fine-grid multivariate sampling relevant for FF dataset augmentation. Our results highlight the growing potential of quantum generative modeling for addressing problems in scientific discovery and advancing data analysis in high-energy physics.
Related papers
- Quantum Latent Diffusion Models [65.16624577812436]
We propose a potential version of a quantum diffusion model that leverages the established idea of classical latent diffusion models.<n>This involves using a traditional autoencoder to reduce images, followed by operations with variational circuits in the latent space.<n>The results demonstrate an advantage in using a quantum version, as evidenced by obtaining better metrics for the images generated by the quantum version.
arXiv Detail & Related papers (2025-01-19T21:24:02Z) - Parameterized quantum circuits as universal generative models for continuous multivariate distributions [1.118478900782898]
ized quantum circuits have been extensively used as the basis for machine learning models in regression, classification, and generative tasks.
In this work, we elucidate expectation value sampling-based models and prove the universality of such variational quantum algorithms.
Our results may help guide the design of future quantum circuits in generative modelling tasks.
arXiv Detail & Related papers (2024-02-15T10:08:31Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
We propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task.
To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks.
We demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies.
arXiv Detail & Related papers (2023-02-23T18:59:05Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Copula-based Risk Aggregation with Trapped Ion Quantum Computers [1.541403735141431]
Copulas are mathematical tools for modeling joint probability distributions.
Recent finding that copulas can be expressed as maximally entangled quantum states has revealed a promising approach to practical quantum advantages.
We study the training of QCBMs with different levels of precision and circuit design on a simulator and a state-of-the-art trapped ion quantum computer.
arXiv Detail & Related papers (2022-06-23T18:39:30Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
We provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models.
Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables.
Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.
arXiv Detail & Related papers (2022-06-01T11:03:51Z) - Protocols for Trainable and Differentiable Quantum Generative Modelling [21.24186888129542]
We propose an approach for learning probability distributions as differentiable quantum circuits (DQC)
We perform training of a DQC-based model, where data is encoded in a latent space with a phase feature map, followed by a variational quantum circuit.
This allows fast sampling from parametrized distributions using a single-shot readout.
arXiv Detail & Related papers (2022-02-16T18:55:48Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
We investigate, within two different oracle models, the learnability of quantum circuit Born machines.
We first show a negative result, that the output distributions of super-logarithmic depth Clifford circuits are not sample-efficiently learnable.
We show that in a more powerful oracle model, namely when directly given access to samples, the output distributions of local Clifford circuits are computationally efficiently PAC learnable.
arXiv Detail & Related papers (2021-10-11T18:00:20Z) - Generative Quantum Learning of Joint Probability Distribution Functions [1.221966660783828]
We design quantum machine learning algorithms to model copulas.
We show that any copula can be naturally mapped to a multipartite maximally entangled state.
A variational ansatz we christen as a qopula' creates arbitrary correlations between variables.
arXiv Detail & Related papers (2021-09-13T20:50:15Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.