Towards Lighter and Robust Evaluation for Retrieval Augmented Generation
- URL: http://arxiv.org/abs/2503.16161v1
- Date: Thu, 20 Mar 2025 13:58:32 GMT
- Title: Towards Lighter and Robust Evaluation for Retrieval Augmented Generation
- Authors: Alex-Razvan Ispas, Charles-Elie Simon, Fabien Caspani, Vincent Guigue,
- Abstract summary: We propose a study which demonstrates the interest of open-weight models for evaluating RAG hallucination.<n>We develop a lightweight approach using smaller, quantized LLMs to provide an accessible and interpretable metric.<n>This score allows us to question decisions' reliability and explore thresholds to develop a new AUC metric.
- Score: 1.631189594086952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models are prompting us to view more NLP tasks from a generative perspective. At the same time, they offer a new way of accessing information, mainly through the RAG framework. While there have been notable improvements for the autoregressive models, overcoming hallucination in the generated answers remains a continuous problem. A standard solution is to use commercial LLMs, such as GPT4, to evaluate these algorithms. However, such frameworks are expensive and not very transparent. Therefore, we propose a study which demonstrates the interest of open-weight models for evaluating RAG hallucination. We develop a lightweight approach using smaller, quantized LLMs to provide an accessible and interpretable metric that gives continuous scores for the generated answer with respect to their correctness and faithfulness. This score allows us to question decisions' reliability and explore thresholds to develop a new AUC metric as an alternative to correlation with human judgment.
Related papers
- Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) has emerged as a widely adopted approach to mitigate the limitations of large language models (LLMs) in answering domain-specific questions.<n>Previous research has predominantly focused on improving the accuracy and quality of retrieved data chunks to enhance the overall performance of the generation pipeline.<n>We investigate the impact of retrieving irrelevant information in open-domain question answering, highlighting its significant detrimental effect on the quality of LLM outputs.
arXiv Detail & Related papers (2024-11-25T06:48:38Z) - Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
We present a light-weight approach for detecting nonfactual outputs from retrieval-augmented generation (RAG)
We compute a factuality score that can be thresholded to yield a binary decision.
Our experiments show high area under the ROC curve (AUC) across a wide range of relevant open source datasets.
arXiv Detail & Related papers (2024-11-01T20:44:59Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Embedding-Informed Adaptive Retrieval-Augmented Generation of Large Language Models [37.02290559379761]
Retrieval-augmented large language models (LLMs) have been remarkably competent in various NLP tasks.<n>Motivated by this, Adaptive Retrieval-Augmented Generation (ARAG) studies retrieving only when the knowledge asked by the query is absent in the LLM.
arXiv Detail & Related papers (2024-04-04T15:21:22Z) - HGOT: Hierarchical Graph of Thoughts for Retrieval-Augmented In-Context Learning in Factuality Evaluation [20.178644251662316]
We introduce the hierarchical graph of thoughts (HGOT) to enhance the retrieval of pertinent passages during in-context learning.
The framework employs the divide-and-conquer strategy to break down complex queries into manageable sub-queries.
It refines self-consistency majority voting for answer selection, which incorporates the recently proposed citation recall and precision metrics.
arXiv Detail & Related papers (2024-02-14T18:41:19Z) - Enhancing Large Language Model Performance To Answer Questions and
Extract Information More Accurately [2.1715455600756646]
Large Language Models (LLMs) generate responses to questions.
Their effectiveness is often hindered by sub-optimal quality of answers and occasional failures to provide accurate responses to questions.
To address these challenges, a fine-tuning process is employed, involving feedback and examples to refine models.
arXiv Detail & Related papers (2024-01-27T00:18:07Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Benchmarking Large Language Models in Retrieval-Augmented Generation [53.504471079548]
We systematically investigate the impact of Retrieval-Augmented Generation on large language models.
We analyze the performance of different large language models in 4 fundamental abilities required for RAG.
We establish Retrieval-Augmented Generation Benchmark (RGB), a new corpus for RAG evaluation in both English and Chinese.
arXiv Detail & Related papers (2023-09-04T08:28:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.