論文の概要: Optimal Complexity in Byzantine-Robust Distributed Stochastic Optimization with Data Heterogeneity
- arxiv url: http://arxiv.org/abs/2503.16337v1
- Date: Thu, 20 Mar 2025 16:56:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 22:26:57.855082
- Title: Optimal Complexity in Byzantine-Robust Distributed Stochastic Optimization with Data Heterogeneity
- Title(参考訳): データ不均一性を考慮したビザンチン-ロバスト分散確率最適化における最適複雑性
- Authors: Qiankun Shi, Jie Peng, Kun Yuan, Xiao Wang, Qing Ling,
- Abstract要約: 本稿では,Byzantine-robust分散一階最適化手法の厳密な下限を確立する。
このギャップを埋めるために、Nesterovの高速化手法を活用して、新しいビザンチン・ロバスト分散最適化法を開発した。
- 参考スコア(独自算出の注目度): 37.14123597310607
- License:
- Abstract: In this paper, we establish tight lower bounds for Byzantine-robust distributed first-order stochastic optimization methods in both strongly convex and non-convex stochastic optimization. We reveal that when the distributed nodes have heterogeneous data, the convergence error comprises two components: a non-vanishing Byzantine error and a vanishing optimization error. We establish the lower bounds on the Byzantine error and on the minimum number of queries to a stochastic gradient oracle required to achieve an arbitrarily small optimization error. Nevertheless, we identify significant discrepancies between our established lower bounds and the existing upper bounds. To fill this gap, we leverage the techniques of Nesterov's acceleration and variance reduction to develop novel Byzantine-robust distributed stochastic optimization methods that provably match these lower bounds, up to logarithmic factors, implying that our established lower bounds are tight.
- Abstract(参考訳): 本稿では,Byzantine-robust分散一階確率最適化手法の強凸および非凸確率最適化における厳密な下界を確立する。
分散ノードが不均一なデータを持つ場合、収束誤差は、非消滅のビザンチン誤差と消滅の最適化誤差の2つの成分からなることを明らかにした。
任意に小さな最適化誤差を達成するために必要な確率勾配オラクルに対する、ビザンチン誤差と最小数のクエリの下位境界を確立する。
それにもかかわらず、我々は確立された下界と既存の上界との間に有意な相違を見出した。
このギャップを埋めるために、Nesterovの加速度と分散低減の手法を活用して、これらの下界を対数的要因まで有意に整合させる、新しいビザンチンロバスト分散確率的最適化手法を開発し、確立された下界がきつくことを示唆する。
関連論文リスト
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
本稿では,アルゴリズムが検索対象関数の雑音評価にのみアクセス可能な2次スムーズかつ強い凸関数を最適化する問題を考察する。
本研究は, ミニマックス単純後悔率について, 一致した上界と下界を発達させることにより, 初めて厳密な評価を行ったものである。
論文 参考訳(メタデータ) (2024-06-28T02:56:22Z) - Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
この問題が低ランクの解を許容する高次元かつ高可算な設定に焦点をあてる。
これらの条件下では、よく知られた過次法が制約付き最適化問題の解に収束することを示す理論的結果がいくつか提示される。
論文 参考訳(メタデータ) (2024-02-14T10:48:00Z) - An Inexact Halpern Iteration with Application to Distributionally Robust
Optimization [9.529117276663431]
決定論的および決定論的収束設定におけるスキームの不正確な変種について検討する。
不正確なスキームを適切に選択することにより、(予想される)剰余ノルムの点において$O(k-1)収束率を許容することを示す。
論文 参考訳(メタデータ) (2024-02-08T20:12:47Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
本稿では,一階変分法の理論解析のための統一的アプローチを提案する。
提案手法は非線形勾配問題とモンテカルロの強い問題の両方をカバーする。
凸法最適化問題の場合、オラクルに強く一致するような境界を与える。
論文 参考訳(メタデータ) (2023-05-25T11:11:31Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
制約の少ない仮定の下で高確率収束結果のアルゴリズムを提案する。
これらの結果は、標準機能クラスに適合しない問題を最適化するために検討された手法の使用を正当化する。
論文 参考訳(メタデータ) (2023-02-02T10:37:23Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
統計学と機械学習における正規化技術に触発され,補完的な複合化の最小化について検討した。
予測と高い確率で、新しい過剰なリスク境界を提供する。
我々のアルゴリズムはほぼ最適であり、このクラスの問題に対して、新しいより低い複雑性境界によって証明する。
論文 参考訳(メタデータ) (2022-11-03T12:40:24Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
我々はヘシアンの形成が困難である問題に対する分散最適化法を検討する。
ランダム化されたスケッチを利用して、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
論文 参考訳(メタデータ) (2022-03-18T05:49:13Z) - Accelerated and instance-optimal policy evaluation with linear function
approximation [17.995515643150657]
既存のアルゴリズムはこれらの下界の少なくとも1つと一致しない。
我々は,両下界を同時に一致させる高速時間差分アルゴリズムを開発し,インスタンス最適性という強い概念を実現する。
論文 参考訳(メタデータ) (2021-12-24T17:21:04Z) - Nonlinear matrix recovery using optimization on the Grassmann manifold [18.655422834567577]
本研究では,列が部分空間の結合などの非線形構造に従う部分観測された高階クラスタリング行列の復元問題について検討する。
交代極限はクルディカ・ロジャシ性質を用いて一意点に収束することを示す。
論文 参考訳(メタデータ) (2021-09-13T16:13:13Z) - Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities [14.848525762485872]
非拡張写像、単調リプシッツ作用素、近位写像の間の接続を利用して、単調包含問題に対する準最適解を得る。
これらの結果は、変分不等式問題に対する強い解の近似、凸凸凹 min-max 最適化問題の近似、および min-max 最適化問題における勾配のノルムの最小化について、ほぼ最適に保証される。
論文 参考訳(メタデータ) (2020-02-20T17:12:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。