HiQ-Lip: The First Quantum-Classical Hierarchical Method for Global Lipschitz Constant Estimation of ReLU Networks
- URL: http://arxiv.org/abs/2503.16342v1
- Date: Thu, 20 Mar 2025 16:58:40 GMT
- Title: HiQ-Lip: The First Quantum-Classical Hierarchical Method for Global Lipschitz Constant Estimation of ReLU Networks
- Authors: Haoqi He, Yan Xiao,
- Abstract summary: Estimating the global Lipschitz constant of neural networks is crucial for understanding and improving their robustness and generalization capabilities.<n>We propose textbfHiQ-Lip, a hybrid quantum-classical hierarchical method that leverages Coherent Ising Machines (CIMs) to estimate the global Lipschitz constant.
- Score: 2.44505480142099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating the global Lipschitz constant of neural networks is crucial for understanding and improving their robustness and generalization capabilities. However, precise calculations are NP-hard, and current semidefinite programming (SDP) methods face challenges such as high memory usage and slow processing speeds. In this paper, we propose \textbf{HiQ-Lip}, a hybrid quantum-classical hierarchical method that leverages Coherent Ising Machines (CIMs) to estimate the global Lipschitz constant. We tackle the estimation by converting it into a Quadratic Unconstrained Binary Optimization (QUBO) problem and implement a multilevel graph coarsening and refinement strategy to adapt to the constraints of contemporary quantum hardware. Our experimental evaluations on fully connected neural networks demonstrate that HiQ-Lip not only provides estimates comparable to state-of-the-art methods but also significantly accelerates the computation process. In specific tests involving two-layer neural networks with 256 hidden neurons, HiQ-Lip doubles the solving speed and offers more accurate upper bounds than the existing best method, LiPopt. These findings highlight the promising utility of small-scale quantum devices in advancing the estimation of neural network robustness.
Related papers
- Quantum-Classical Hybrid Quantized Neural Network [7.759760132559044]
We present a novel Quadratic Binary Optimization (QBO) model for quantized neural network training, enabling the use of arbitrary activation and loss functions.<n>We employ the Quantum Gradient Conditional Descent (QCGD) algorithm, which leverages quantum computing to directly solve the QCBO problem.<n> Experimental results using a coherent Ising machine (CIM) demonstrate a 94.95% accuracy on the Fashion MNIST classification task, with only 1.1-bit precision.
arXiv Detail & Related papers (2025-06-23T02:12:36Z) - SRBB-Based Quantum State Preparation [1.3108652488669736]
A scalable algorithm for the approximate quantum state preparation problem is proposed.<n>The algorithm uses a variational quantum circuit based on the Standard Recursive Block Basis (SRBB)<n>The desired quantum state is then approximated by a scalable quantum neural network.
arXiv Detail & Related papers (2025-03-17T18:51:07Z) - Constraint Guided Model Quantization of Neural Networks [0.0]
Constraint Guided Model Quantization (CGMQ) is a quantization aware training algorithm that uses an upper bound on the computational resources and reduces the bit-widths of the parameters of the neural network.
It is shown on MNIST that the performance of CGMQ is competitive with state-of-the-art quantization aware training algorithms.
arXiv Detail & Related papers (2024-09-30T09:41:16Z) - Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
We present a hybrid quantum-classical approach that implements memory through classical post-processing of quantum measurements.
We tested our model on two physical platforms: a fully connected Ising model and a Rydberg atom array.
arXiv Detail & Related papers (2024-09-15T22:44:09Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - State of practice: evaluating GPU performance of state vector and tensor network methods [2.4851820343103035]
This article investigates the limits of current state-of-the-art simulation techniques on a test bench made of eight widely used quantum subroutines.
We highlight how to select the best simulation strategy, obtaining a speedup of up to an order of magnitude.
arXiv Detail & Related papers (2024-01-11T09:22:21Z) - Efficient Bound of Lipschitz Constant for Convolutional Layers by Gram
Iteration [122.51142131506639]
We introduce a precise, fast, and differentiable upper bound for the spectral norm of convolutional layers using circulant matrix theory.
We show through a comprehensive set of experiments that our approach outperforms other state-of-the-art methods in terms of precision, computational cost, and scalability.
It proves highly effective for the Lipschitz regularization of convolutional neural networks, with competitive results against concurrent approaches.
arXiv Detail & Related papers (2023-05-25T15:32:21Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing.
Due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability.
In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed.
arXiv Detail & Related papers (2023-05-15T14:57:01Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.