論文の概要: Graph of Effort: Quantifying Risk of AI Usage for Vulnerability Assessment
- arxiv url: http://arxiv.org/abs/2503.16392v1
- Date: Thu, 20 Mar 2025 17:52:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:34:52.881023
- Title: Graph of Effort: Quantifying Risk of AI Usage for Vulnerability Assessment
- Title(参考訳): Effortのグラフ: 脆弱性評価のためのAI使用リスクの定量化
- Authors: Anket Mehra, Andreas Aßmuth, Malte Prieß,
- Abstract要約: 非AI資産を攻撃するために使用されるAIは、攻撃的AIと呼ばれる。
高度な自動化や複雑なパターン認識など、その能力を利用するリスクは大幅に増大する可能性がある。
本稿では,攻撃的AIを敵による脆弱性攻撃に使用するために必要な労力を分析するための,直感的でフレキシブルで効果的な脅威モデリング手法であるGraph of Effortを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: With AI-based software becoming widely available, the risk of exploiting its capabilities, such as high automation and complex pattern recognition, could significantly increase. An AI used offensively to attack non-AI assets is referred to as offensive AI. Current research explores how offensive AI can be utilized and how its usage can be classified. Additionally, methods for threat modeling are being developed for AI-based assets within organizations. However, there are gaps that need to be addressed. Firstly, there is a need to quantify the factors contributing to the AI threat. Secondly, there is a requirement to create threat models that analyze the risk of being attacked by AI for vulnerability assessment across all assets of an organization. This is particularly crucial and challenging in cloud environments, where sophisticated infrastructure and access control landscapes are prevalent. The ability to quantify and further analyze the threat posed by offensive AI enables analysts to rank vulnerabilities and prioritize the implementation of proactive countermeasures. To address these gaps, this paper introduces the Graph of Effort, an intuitive, flexible, and effective threat modeling method for analyzing the effort required to use offensive AI for vulnerability exploitation by an adversary. While the threat model is functional and provides valuable support, its design choices need further empirical validation in future work.
- Abstract(参考訳): AIベースのソフトウェアが広く利用できるようになると、自動化や複雑なパターン認識など、その能力を悪用するリスクが大幅に増大する可能性がある。
非AI資産を攻撃するために攻撃的に使用されるAIは、攻撃的なAIと呼ばれる。
現在の研究では、攻撃的なAIをどのように活用し、その使い方を分類する方法が研究されている。
さらに、組織内のAIベースの資産に対して脅威モデリングの手法が開発されている。
しかし、対処すべきギャップがあります。
まず、AIの脅威に寄与する要因を定量化する必要がある。
第二に、組織の全資産にわたる脆弱性評価のために、AIによって攻撃されるリスクを分析する脅威モデルを作成する必要がある。
これは、高度なインフラストラクチャとアクセス制御のランドスケープが一般的であるクラウド環境において、特に重要で難しい。
攻撃的AIによる脅威を定量化し分析する能力により、アナリストは脆弱性をランク付けし、積極的な対策の実装を優先することができる。
これらのギャップに対処するために,攻撃的AIを敵による脆弱性攻撃に使用するために必要な労力を分析するための,直感的で柔軟で効果的な脅威モデリング手法であるGraph of Effortを紹介した。
脅威モデルは機能的で価値あるサポートを提供するが、その設計選択は将来の作業においてさらに実証的な検証が必要である。
関連論文リスト
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Considerations Influencing Offense-Defense Dynamics From Artificial Intelligence [0.0]
AIは防御能力を向上するだけでなく、悪意ある搾取と大規模な社会的危害のための道も提示する。
本稿では、AIシステムが主に脅威を生じているか、社会に保護的利益をもたらすかに影響を及ぼす主要な要因をマップし、検証するための分類法を提案する。
論文 参考訳(メタデータ) (2024-12-05T10:05:53Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
本稿では,人工知能(AI)の攻撃的サイバーセキュリティへの統合について検討する。
サイバー攻撃をシミュレートし実行するために設計された、自律的なAIエージェントであるReaperAIを開発している。
ReaperAIは、セキュリティ脆弱性を自律的に識別し、悪用し、分析する可能性を実証する。
論文 参考訳(メタデータ) (2024-05-09T18:15:12Z) - Asset-centric Threat Modeling for AI-based Systems [7.696807063718328]
本稿では、AI関連資産、脅威、対策、残留リスクの定量化のためのアプローチおよびツールであるThreatFinderAIを提案する。
このアプローチの実用性を評価するため、参加者はAIベースのヘルスケアプラットフォームのサイバーセキュリティ専門家によって開発された脅威モデルを再現するよう命じられた。
全体として、ソリューションのユーザビリティはよく認識され、脅威の識別とリスクの議論を効果的にサポートする。
論文 参考訳(メタデータ) (2024-03-11T08:40:01Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - AI Potentiality and Awareness: A Position Paper from the Perspective of
Human-AI Teaming in Cybersecurity [18.324118502535775]
我々は、人間とAIのコラボレーションはサイバーセキュリティに価値があると論じている。
私たちは、AIの計算能力と人間の専門知識を取り入れたバランスのとれたアプローチの重要性を強調します。
論文 参考訳(メタデータ) (2023-09-28T01:20:44Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Security and Privacy for Artificial Intelligence: Opportunities and
Challenges [11.368470074697747]
近年、ほとんどのAIモデルは高度なハッキング技術に弱い。
この課題は、敵AIの研究努力を共同で進めるきっかけとなった。
我々は、AIアプリケーションに対する敵攻撃を実証する総合的なサイバーセキュリティレビューを提示する。
論文 参考訳(メタデータ) (2021-02-09T06:06:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。