RoboFactory: Exploring Embodied Agent Collaboration with Compositional Constraints
- URL: http://arxiv.org/abs/2503.16408v1
- Date: Thu, 20 Mar 2025 17:58:38 GMT
- Title: RoboFactory: Exploring Embodied Agent Collaboration with Compositional Constraints
- Authors: Yiran Qin, Li Kang, Xiufeng Song, Zhenfei Yin, Xiaohong Liu, Xihui Liu, Ruimao Zhang, Lei Bai,
- Abstract summary: We propose the concept of compositional constraints for embodied multi-agent systems.<n>We design interfaces tailored to different types of constraints, enabling seamless interaction with the physical world.<n>We introduce the first benchmark for embodied multi-agent manipulation, RoboFactory.
- Score: 27.467048581838405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing effective embodied multi-agent systems is critical for solving complex real-world tasks across domains. Due to the complexity of multi-agent embodied systems, existing methods fail to automatically generate safe and efficient training data for such systems. To this end, we propose the concept of compositional constraints for embodied multi-agent systems, addressing the challenges arising from collaboration among embodied agents. We design various interfaces tailored to different types of constraints, enabling seamless interaction with the physical world. Leveraging compositional constraints and specifically designed interfaces, we develop an automated data collection framework for embodied multi-agent systems and introduce the first benchmark for embodied multi-agent manipulation, RoboFactory. Based on RoboFactory benchmark, we adapt and evaluate the method of imitation learning and analyzed its performance in different difficulty agent tasks. Furthermore, we explore the architectures and training strategies for multi-agent imitation learning, aiming to build safe and efficient embodied multi-agent systems.
Related papers
- An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework [49.633199780510864]
This work proposes a multi-agent autonomous mechatronics design framework, integrating expertise across mechanical design, optimization, electronics, and software engineering.
operating primarily through a language-driven workflow, the framework incorporates structured human feedback to ensure robust performance under real-world constraints.
A fully functional autonomous vessel was developed with optimized propulsion, cost-effective electronics, and advanced control.
arXiv Detail & Related papers (2025-04-20T16:57:45Z) - The Athenian Academy: A Seven-Layer Architecture Model for Multi-Agent Systems [13.241259457317547]
This paper proposes the "Academy of Athens" multi-agent seven-layer framework.
It addresses challenges in multi-agent systems (MAS) within artificial intelligence (AI) art creation.
The framework provides a structured methodology for multi-agent collaboration in AI art creation and promotes innovative applications in the art field.
arXiv Detail & Related papers (2025-04-17T08:21:28Z) - LLMs Working in Harmony: A Survey on the Technological Aspects of Building Effective LLM-Based Multi Agent Systems [0.0]
This survey investigates foundational technologies essential for developing effective Large Language Model (LLM)-based multi-agent systems.
Aiming to answer how best to optimize these systems for collaborative, dynamic environments, we focus on four critical areas: Architecture, Memory, Planning, and Technologies/ Frameworks.
arXiv Detail & Related papers (2025-03-13T06:17:50Z) - EMOS: Embodiment-aware Heterogeneous Multi-robot Operating System with LLM Agents [33.77674812074215]
We introduce a novel multi-agent framework designed to enable effective collaboration among heterogeneous robots.
We propose a self-prompted approach, where agents comprehend robot URDF files and call robot kinematics tools to generate descriptions of their physics capabilities.
The Habitat-MAS benchmark is designed to assess how a multi-agent framework handles tasks that require embodiment-aware reasoning.
arXiv Detail & Related papers (2024-10-30T03:20:01Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
We develop new features and components for AgentScope, a user-friendly multi-agent platform.
We propose an actor-based distributed mechanism towards great scalability and high efficiency.
We also provide a web-based interface for conveniently monitoring and managing a large number of agents.
arXiv Detail & Related papers (2024-07-25T05:50:46Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration [0.0]
We focus on designing a flexible agent engineering framework capable of handling complex use case applications across various domains.
The proposed framework provides reliability in industrial applications and presents techniques to ensure a scalable, flexible, and collaborative workflow for multiple autonomous agents.
arXiv Detail & Related papers (2024-06-28T16:39:20Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - A Unified Architecture for Dynamic Role Allocation and Collaborative
Task Planning in Mixed Human-Robot Teams [0.0]
We present a novel architecture for dynamic role allocation and collaborative task planning in a mixed human-robot team of arbitrary size.
The architecture capitalizes on a centralized reactive and modular task-agnostic planning method based on Behavior Trees (BTs)
Different metrics used as MILP cost allow the architecture to favor various aspects of the collaboration.
arXiv Detail & Related papers (2023-01-19T12:30:56Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.