論文の概要: PersonalityScanner: Exploring the Validity of Personality Assessment Based on Multimodal Signals in Virtual Reality
- arxiv url: http://arxiv.org/abs/2407.19728v1
- Date: Mon, 29 Jul 2024 06:17:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 14:56:26.215694
- Title: PersonalityScanner: Exploring the Validity of Personality Assessment Based on Multimodal Signals in Virtual Reality
- Title(参考訳): パーソナリティスキャナ:バーチャルリアリティにおけるマルチモーダル信号に基づくパーソナリティ評価の妥当性の検討
- Authors: Xintong Zhang, Di Lu, Huiqi Hu, Nan Jiang, Xianhao Yu, Jinan Xu, Yujia Peng, Qing Li, Wenjuan Han,
- Abstract要約: PersonalityScannerは、認知プロセスを刺激し、日々の行動をシミュレートするVRシミュレータである。
ビデオ、音声、テキスト、アイトラッキング、顔のマイクロ圧縮、ポーズ、深度データ、ログ、慣性測定ユニットを含む10つのモードの同期マルチモーダルデータセットを収集する。
- 参考スコア(独自算出の注目度): 44.15145632980038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human cognition significantly influences expressed behavior and is intrinsically tied to authentic personality traits. Personality assessment plays a pivotal role in various fields, including psychology, education, social media, etc. However, traditional self-report questionnaires can only provide data based on what individuals are willing and able to disclose, thereby lacking objective. Moreover, automated measurements and peer assessments demand significant human effort and resources. In this paper, given the advantages of the Virtual Reality (VR) technique, we develop a VR simulator -- PersonalityScanner, to stimulate cognitive processes and simulate daily behaviors based on an immersive and interactive simulation environment, in which participants carry out a battery of engaging tasks that formulate a natural story of first-day at work. Through this simulator, we collect a synchronous multi-modal dataset with ten modalities, including first/third-person video, audio, text, eye tracking, facial microexpression, pose, depth data, log, and inertial measurement unit. By systematically examining the contributions of different modalities on revealing personality, we demonstrate the superior performance and effectiveness of PersonalityScanner.
- Abstract(参考訳): 人間の認知は表現された行動に大きく影響を与え、本質的に真の性格特性と結びついている。
個性評価は、心理学、教育、ソーシャルメディアなど、様々な分野で重要な役割を果たしている。
しかし、従来の自己報告型アンケートでは、個人が何を開示し得るかに基づいたデータしか提供できないため、目的を欠いている。
さらに、自動測定とピアアセスメントは、多大な人的努力とリソースを必要とする。
本稿では,VR(VR)技術の利点を生かして,VRシミュレーターであるPersonalityScannerを開発し,没入型対話型シミュレーション環境に基づく日常行動のシミュレーションを行った。
本シミュレータを用いて,第1/第3者ビデオ,音声,テキスト,アイトラッキング,顔のマイクロ圧縮,ポーズ,深度データ,ログ,慣性測定ユニットを含む10つのモードの同期マルチモーダルデータセットを収集する。
個性を明らかにするための様々なモダリティの貢献を体系的に検討することにより、パーソナリティスキャナーの優れた性能と効果を実証する。
関連論文リスト
- PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Behavioural gap assessment of human-vehicle interaction in real and virtual reality-based scenarios in autonomous driving [7.588679613436823]
我々は,VR実験に携わる参加者の行動の相違を,等価な実世界の状況と比較して捉える概念である行動ギャップ(obactiveal gap)と呼ぶものを評価するための,最初の,革新的なアプローチを提案する。
実験では、歩行者は異なる運転スタイルと外部ヒューマン・マシン・インタフェース(eHMI)の存在下で道路を横断しようとする。
結果は、参加者がVRに対してより慎重で好奇心を持ち、そのスピードと判断に影響を与え、VRインターフェースが行動に大きく影響していることを示している。
論文 参考訳(メタデータ) (2024-07-04T17:20:17Z) - Human Simulacra: Benchmarking the Personification of Large Language Models [38.21708264569801]
大規模言語モデル(LLM)は、人間の知性の側面を忠実に模倣するシステムとして認識されている。
本稿では,仮想キャラクタのライフストーリーをゼロから構築するためのフレームワークを提案する。
実験により, 構築したシミュラクラは, 対象キャラクタと一致した擬人化応答を生成できることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:11:14Z) - Personality-aware Human-centric Multimodal Reasoning: A New Task,
Dataset and Baselines [32.82738983843281]
我々はPersonality-aware Human-centric Multimodal Reasoning (PHMR) (T1)と呼ばれる新しいタスクを導入する。
課題は、過去の事例から得たマルチモーダル情報を用いて、個性要素を統合しながら、特定の個人の将来行動を予測することである。
実験の結果,性格特性を取り入れることで,人間中心の多モーダル推論性能が向上することが示された。
論文 参考訳(メタデータ) (2023-04-05T09:09:10Z) - Facial Expression Recognition using Squeeze and Excitation-powered Swin
Transformers [0.0]
本研究では,Swin Vision Transformers (SwinT) とSwin Vision Transformers (SE) を用いて,視覚タスクに対処するフレームワークを提案する。
我々の焦点は、最小限のデータを使って顔の感情を認識できるSwinTアーキテクチャに基づく効率的なFERモデルを作ることであった。
我々は、ハイブリッドデータセットでモデルをトレーニングし、そのパフォーマンスをAffectNetデータセットで評価し、F1スコア0.5420を達成しました。
論文 参考訳(メタデータ) (2023-01-26T02:29:17Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - BEHAVIOR: Benchmark for Everyday Household Activities in Virtual,
Interactive, and Ecological Environments [70.18430114842094]
本稿では,シミュレーションにおける100のアクティビティを持つAIのベンチマークであるBEHAVIORを紹介する。
これらの活動は現実的で多様性があり、複雑であるように設計されています。
われわれは、バーチャルリアリティー(VR)における500件の人間デモを含む。
論文 参考訳(メタデータ) (2021-08-06T23:36:23Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
本稿では,ピアツーピアのHindi会話データセットであるVyaktitvを提案する。
参加者の高品質な音声とビデオの録音と、会話ごとにヒングリッシュのテキストによる書き起こしで構成されている。
データセットには、収入、文化的指向など、すべての参加者のための豊富な社会デコグラフィー的特徴が含まれています。
論文 参考訳(メタデータ) (2020-08-31T17:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。