The Impact of Generative AI Coding Assistants on Developers Who Are Visually Impaired
- URL: http://arxiv.org/abs/2503.16491v1
- Date: Mon, 10 Mar 2025 22:06:43 GMT
- Title: The Impact of Generative AI Coding Assistants on Developers Who Are Visually Impaired
- Authors: Claudia Flores-Saviaga, Benjamin V. Hanrahan, Kashif Imteyaz, Steven Clarke, Saiph Savage,
- Abstract summary: We conducted a study where developers who are visually impaired completed a series of programming tasks using a generative AI coding assistant.<n>While participants found the AI assistant beneficial and reported significant advantages, they also highlighted accessibility challenges.<n>Our findings emphasize the need to apply activity-centered design principles to generative AI assistants.
- Score: 3.2895414694900684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid adoption of generative AI in software development has impacted the industry, yet its effects on developers with visual impairments remain largely unexplored. To address this gap, we used an Activity Theory framework to examine how developers with visual impairments interact with AI coding assistants. For this purpose, we conducted a study where developers who are visually impaired completed a series of programming tasks using a generative AI coding assistant. We uncovered that, while participants found the AI assistant beneficial and reported significant advantages, they also highlighted accessibility challenges. Specifically, the AI coding assistant often exacerbated existing accessibility barriers and introduced new challenges. For example, it overwhelmed users with an excessive number of suggestions, leading developers who are visually impaired to express a desire for ``AI timeouts.'' Additionally, the generative AI coding assistant made it more difficult for developers to switch contexts between the AI-generated content and their own code. Despite these challenges, participants were optimistic about the potential of AI coding assistants to transform the coding experience for developers with visual impairments. Our findings emphasize the need to apply activity-centered design principles to generative AI assistants, ensuring they better align with user behaviors and address specific accessibility needs. This approach can enable the assistants to provide more intuitive, inclusive, and effective experiences, while also contributing to the broader goal of enhancing accessibility in software development.
Related papers
- Human-AI Experience in Integrated Development Environments: A Systematic Literature Review [2.1749194587826026]
In-IDE HAX explores the evolving dynamics of Human-Computer Interaction in AI-assisted coding environments.<n>Our findings reveal that AI-assisted coding enhances developer productivity but also introduces challenges, such as verification overhead, automation bias, and over-reliance.<n>Concerns about code correctness, security, and maintainability highlight the urgent need for explainability, verification mechanisms, and adaptive user control.
arXiv Detail & Related papers (2025-03-08T12:40:18Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
There is a growing proliferation of AI systems designed to mimic people's behavior, work, abilities, likenesses, or humanness.
The research, design, deployment, and availability of such AI systems have prompted growing concerns about a wide range of possible legal, ethical, and other social impacts.
arXiv Detail & Related papers (2025-03-04T03:55:38Z) - CodeA11y: Making AI Coding Assistants Useful for Accessible Web Development [22.395216419337768]
Despite specialized accessibility tools, novice developers often remain unaware of them, leading to 96% of web pages that contain accessibility violations.<n>Our formative study with 16 developers revealed three key issues in AI-assisted coding: failure to prompt AI for accessibility, omitting crucial manual steps like replacing placeholder attributes, and the inability to verify compliance.<n>To address these issues, we developed CodeA11y, a GitHub Copilot Extension, that suggests accessibility-compliant code and displays manual validation reminders.
arXiv Detail & Related papers (2025-02-15T19:11:21Z) - The Design Space of in-IDE Human-AI Experience [6.05260196829912]
Key findings stress the need for AI systems that are more personalized, proactive, and reliable.
Our findings show that while Adopters appreciate advanced features and non-interruptive integration, Churners emphasize the need for improved reliability and privacy.
Non-Users, in contrast, focus on skill development and ethical concerns as barriers to adoption.
arXiv Detail & Related papers (2024-10-11T10:02:52Z) - Making Software Development More Diverse and Inclusive: Key Themes, Challenges, and Future Directions [50.545824691484796]
We identify six themes around the theme challenges and opportunities to improve Software Developer Diversity and Inclusion (SDDI)<n>We identify benefits, harms, and future research directions for the four main themes.<n>We discuss the remaining two themes, Artificial Intelligence & SDDI and AI & Computer Science education, which have a cross-cutting effect on the other themes.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes [11.520721038793285]
This study focuses on the initial experiences of 62 participants who used a contextualized coding AI assistant -- named StackSpot AI -- in a controlled setting.
Assistants' use resulted in significant time savings, easier access to documentation, and the generation of accurate codes for internal APIs.
challenges associated with the knowledge sources necessary to make the coding assistant access more contextual information as well as variable responses and limitations in handling complex codes were observed.
arXiv Detail & Related papers (2023-11-30T10:52:28Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - A Large-Scale Survey on the Usability of AI Programming Assistants:
Successes and Challenges [23.467373994306524]
In practice, developers do not accept AI programming assistants' initial suggestions at a high frequency.
To understand developers' practices while using these tools, we administered a survey to a large population of developers.
We found that developers are most motivated to use AI programming assistants because they help developers reduce key-strokes, finish programming tasks quickly, and recall syntax.
We also found the most important reasons why developers do not use these tools are because these tools do not output code that addresses certain functional or non-functional requirements.
arXiv Detail & Related papers (2023-03-30T03:21:53Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.