Medifact at PerAnsSumm 2025: Leveraging Lightweight Models for Perspective-Specific Summarization of Clinical Q&A Forums
- URL: http://arxiv.org/abs/2503.16513v1
- Date: Sat, 15 Mar 2025 17:36:02 GMT
- Title: Medifact at PerAnsSumm 2025: Leveraging Lightweight Models for Perspective-Specific Summarization of Clinical Q&A Forums
- Authors: Nadia Saeed,
- Abstract summary: The PerAnsSumm 2025 challenge focuses on perspective-aware healthcare answer summarization.<n>This work proposes a few-shot learning framework using a Snorkel-BART-SVM pipeline for classifying and summarizing open-ended healthcare community question-answering.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The PerAnsSumm 2025 challenge focuses on perspective-aware healthcare answer summarization (Agarwal et al., 2025). This work proposes a few-shot learning framework using a Snorkel-BART-SVM pipeline for classifying and summarizing open-ended healthcare community question-answering (CQA). An SVM model is trained with weak supervision via Snorkel, enhancing zero-shot learning. Extractive classification identifies perspective-relevant sentences, which are then summarized using a pretrained BART-CNN model. The approach achieved 12th place among 100 teams in the shared task, demonstrating computational efficiency and contextual accuracy. By leveraging pretrained summarization models, this work advances medical CQA research and contributes to clinical decision support systems.
Related papers
- Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Improving Clinical Question Answering with Multi-Task Learning: A Joint Approach for Answer Extraction and Medical Categorization [2.380499804323775]
We introduce a Multi-Task Learning framework that jointly trains CQA models for both answer extraction and medical categorization.<n>In addition to predicting answer spans, our model classifies responses into five standardized medical categories: Diagnosis, Medication, Symptoms, Procedure, and Lab Reports.<n>Results show that MTL improves F1-score by 2.2% compared to standard fine-tuning, while achieving 90.7% accuracy in answer categorization.
arXiv Detail & Related papers (2025-02-18T18:20:37Z) - Towards Efficient Patient Recruitment for Clinical Trials: Application of a Prompt-Based Learning Model [0.7373617024876725]
Clinical trials are essential for advancing pharmaceutical interventions, but they face a bottleneck in selecting eligible participants.
The complex nature of unstructured medical texts presents challenges in efficiently identifying participants.
In this study, we aimed to evaluate the performance of a prompt-based large language model for the cohort selection task.
arXiv Detail & Related papers (2024-04-24T20:42:28Z) - SemEval-2024 Task 2: Safe Biomedical Natural Language Inference for Clinical Trials [13.59675117792588]
We present SemEval-2024 Task 2: Safe Biomedical Natural Language Inference for ClinicalTrials.
Our contributions include the refined NLI4CT-P dataset (i.e., Natural Language Inference for Clinical Trials - Perturbed)
A total of 106 participants registered for the task contributing to over 1200 individual submissions and 25 system overview papers.
This initiative aims to advance the robustness and applicability of NLI models in healthcare, ensuring safer and more dependable AI assistance in clinical decision-making.
arXiv Detail & Related papers (2024-04-07T13:58:41Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
The scarcity of labelled medical image-report pairs presents great challenges in the development of deep and large-scale neural networks.
We propose customizing off-the-shelf general-purpose large-scale pre-trained models, i.e., foundation models (FMs) in computer vision and natural language processing.
arXiv Detail & Related papers (2023-06-09T03:02:36Z) - CUED at ProbSum 2023: Hierarchical Ensemble of Summarization Models [8.237131071390715]
We consider the challenge of summarizing patients' medical progress notes in a limited data setting.
For the Problem List Summarization (shared task 1A) at the BioNLP Workshop 2023, we demonstrate that Clinical-T5 fine-tuned to 765 medical clinic notes outperforms other extractive, abstractive and zero-shot baselines.
arXiv Detail & Related papers (2023-06-08T16:08:10Z) - Overview of the Problem List Summarization (ProbSum) 2023 Shared Task on
Summarizing Patients' Active Diagnoses and Problems from Electronic Health
Record Progress Notes [5.222442967088892]
The BioNLP Workshop 2023 initiated the launch of a shared task on Problem List Summarization (ProbSum)
The goal for participants is to develop models that generated a list of diagnoses and problems using input from the daily care notes collected from the hospitalization of critically ill patients.
Eight teams submitted their final systems to the shared task leaderboard.
arXiv Detail & Related papers (2023-06-08T15:19:57Z) - PULSAR: Pre-training with Extracted Healthcare Terms for Summarising
Patients' Problems and Data Augmentation with Black-box Large Language Models [25.363775123262307]
Automatic summarisation of a patient's problems in the form of a problem list can aid stakeholders in understanding a patient's condition, reducing workload and cognitive bias.
BioNLP 2023 Shared Task 1A focuses on generating a list of diagnoses and problems from the provider's progress notes during hospitalisation.
One component employs large language models (LLMs) for data augmentation; the other is an abstractive summarisation LLM with a novel pre-training objective for generating the patients' problems summarised as a list.
Our approach was ranked second among all submissions to the shared task.
arXiv Detail & Related papers (2023-06-05T10:17:50Z) - PMC-VQA: Visual Instruction Tuning for Medical Visual Question Answering [56.25766322554655]
Medical Visual Question Answering (MedVQA) presents a significant opportunity to enhance diagnostic accuracy and healthcare delivery.
We propose a generative-based model for medical visual understanding by aligning visual information from a pre-trained vision encoder with a large language model.
We train the proposed model on PMC-VQA and then fine-tune it on multiple public benchmarks, e.g., VQA-RAD, SLAKE, and Image-Clef 2019.
arXiv Detail & Related papers (2023-05-17T17:50:16Z) - ITTC @ TREC 2021 Clinical Trials Track [54.141379782822206]
The task focuses on the problem of matching eligible clinical trials to topics constituting a summary of a patient's admission notes.
We explore different ways of representing trials and topics using NLP techniques, and then use a common retrieval model to generate the ranked list of relevant trials for each topic.
The results from all our submitted runs are well above the median scores for all topics, but there is still plenty of scope for improvement.
arXiv Detail & Related papers (2022-02-16T04:56:47Z) - Two-Stream Consensus Network: Submission to HACS Challenge 2021
Weakly-Supervised Learning Track [78.64815984927425]
The goal of weakly-supervised temporal action localization is to temporally locate and classify action of interest in untrimmed videos.
We adopt the two-stream consensus network (TSCN) as the main framework in this challenge.
Our solution ranked 2rd in this challenge, and we hope our method can serve as a baseline for future academic research.
arXiv Detail & Related papers (2021-06-21T03:36:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.