Isoperimetric Inequalities in Quantum Geometry
- URL: http://arxiv.org/abs/2503.16604v1
- Date: Thu, 20 Mar 2025 18:00:01 GMT
- Title: Isoperimetric Inequalities in Quantum Geometry
- Authors: Praveen Pai, Fan Zhang,
- Abstract summary: We reveal strong and weak inequalities relating two fundamental macroscopic quantum geometric quantities, the quantum distance and Berry phase, for closed paths in the Hilbert space of wavefunctions.<n>We recount the role of quantum geometry in various quantum problems and show that our findings place new bounds on important physical quantities.
- Score: 2.3498163541080683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We reveal strong and weak inequalities relating two fundamental macroscopic quantum geometric quantities, the quantum distance and Berry phase, for closed paths in the Hilbert space of wavefunctions. We recount the role of quantum geometry in various quantum problems and show that our findings place new bounds on important physical quantities.
Related papers
- A note on lower bounds of concurrence for arbitrary dimensional bipartite quantum states [11.522240821077304]
We present analytical lower bounds for both concurrence and 2-concurrence based on the correlation matrices of bipartite quantum states.<n>Compared with other related lower bounds, our approach provides a better estimation of the entanglement, particularly for states with large purity.
arXiv Detail & Related papers (2025-03-20T16:15:21Z) - Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Relating the topology of Dirac Hamiltonians to quantum geometry: When
the quantum metric dictates Chern numbers and winding numbers [0.0]
We establish relations between the quantum metric and the topological invariants of generic Dirac Hamiltonians.
We show that topological indices are bounded by the quantum volume determined by the quantum metric.
This work suggests unexplored topological responses and metrological applications in a broad class of quantum-engineered systems.
arXiv Detail & Related papers (2021-06-01T21:10:48Z) - Characterizing quantum ensemble using geometric measure of quantum
coherence [1.5630592429258865]
We propose a quantumness quantifier for the quantum ensemble.
It satisfies the necessary axioms of a bonafide measure of quantumness.
We compute the quantumness of a few well-known ensembles.
arXiv Detail & Related papers (2021-04-19T07:37:27Z) - The Transition from Quantum to Classical in weak measurements and
reconstruction of Quantum Correlation [0.0]
We show that the relation between the readout signal of a single electron spin and the quantum dynamics of the single nuclear spin is given by a parameter related to the measurement strength.
We prove the validity of our approach by measuring violations of the Leggett-Garg inequality.
arXiv Detail & Related papers (2021-04-09T17:46:55Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Quantum Polar Duality and the Symplectic Camel: a Geometric Approach to
Quantization [0.0]
We study the notion of quantum polarity, which is a kind of geometric Fourier transform between sets of positions and sets of momenta.
We show that quantum polarity allows solving the Pauli reconstruction problem for Gaussian wavefunctions.
We discuss the Hardy uncertainty principle and the less-known Donoho--Stark principle from the point of view of quantum polarity.
arXiv Detail & Related papers (2020-09-22T16:55:28Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.