論文の概要: A preliminary data fusion study to assess the feasibility of Foundation Process-Property Models in Laser Powder Bed Fusion
- arxiv url: http://arxiv.org/abs/2503.16667v1
- Date: Thu, 20 Mar 2025 19:29:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:56:06.979032
- Title: A preliminary data fusion study to assess the feasibility of Foundation Process-Property Models in Laser Powder Bed Fusion
- Title(参考訳): レーザー粉体融合における基礎プロセスモデルの実現可能性評価のための予備データ融合研究
- Authors: Oriol Vendrell-Gallart, Nima Negarandeh, Zahra Zanjani Foumani, Mahsa Amiri, Lorenzo Valdevit, Ramin Bostanabad,
- Abstract要約: 基礎プロセスプロパティモデルの構築を妨げる大きな課題は、データの不足である。
レーザー粉末層融合(LPBF)における17-4 PHおよび316Lステンレス鋼(SS)から実験データセットを生成する。
次に、ガウス過程(GP)を様々な構成のプロセス固有性モデリングに利用し、ある物質系や性質に関する知識を活用できるかどうかを検証し、他の物質系や特性のためのより正確な機械学習モデルを構築する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Foundation models are at the forefront of an increasing number of critical applications. In regards to technologies such as additive manufacturing (AM), these models have the potential to dramatically accelerate process optimization and, in turn, design of next generation materials. A major challenge that impedes the construction of foundation process-property models is data scarcity. To understand the impact of this challenge, and since foundation models rely on data fusion, in this work we conduct controlled experiments where we focus on the transferability of information across different material systems and properties. More specifically, we generate experimental datasets from 17-4 PH and 316L stainless steels (SSs) in Laser Powder Bed Fusion (LPBF) where we measure the effect of five process parameters on porosity and hardness. We then leverage Gaussian processes (GPs) for process-property modeling in various configurations to test if knowledge about one material system or property can be leveraged to build more accurate machine learning models for other material systems or properties. Through extensive cross-validation studies and probing the GPs' interpretable hyperparameters, we study the intricate relation among data size and dimensionality, complexity of the process-property relations, noise, and characteristics of machine learning models. Our findings highlight the need for structured learning approaches that incorporate domain knowledge in building foundation process-property models rather than relying on uninformed data fusion in data-limited applications.
- Abstract(参考訳): ファンデーションモデルは、多くの重要なアプリケーションの最前線にいる。
添加性製造(AM)などの技術に関して、これらのモデルはプロセス最適化を劇的に加速し、代わりに次世代材料の設計を行う可能性がある。
基礎プロセスプロパティモデルの構築を妨げる大きな課題は、データの不足である。
この課題の影響を理解するため、基礎モデルはデータ融合に依存しているので、制御された実験を行い、異なる材料システムや特性間の情報の伝達性に注目します。
具体的には,レーザー粉層融合(LPBF)における17-4 PHおよび316Lステンレス鋼(SSs)から実験データセットを生成し,5つのプロセスパラメータがポーシティと硬さに与える影響を計測した。
次に、ガウス過程(GP)を様々な構成のプロセス固有性モデリングに利用し、ある物質系や性質に関する知識を活用できるかどうかを検証し、他の物質系や特性のためのより正確な機械学習モデルを構築する。
GPの解釈可能なハイパーパラメーターのクロスバリデーション研究と探索を通じて,データサイズと次元の複雑な関係,プロセス-プロパティ関係の複雑さ,ノイズ,機械学習モデルの特徴について検討する。
本研究は,データ限定型アプリケーションにおいて,非インフォームドデータ融合に頼るのではなく,基礎プロセス固有モデル構築にドメイン知識を取り入れた構造化学習アプローチの必要性を強調した。
関連論文リスト
- Foundation Model for Composite Materials and Microstructural Analysis [0.0]
複合材料に特化して設計された基礎モデルを提案する。
本研究は, 複合材料における基礎モデルの有効性と有効性について検証した。
このフレームワークは実験データが少ない場合でも高精度な予測を可能にする。
論文 参考訳(メタデータ) (2024-11-10T19:06:25Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development [67.55944651679864]
統合データモデル共同開発に適した新しいサンドボックススイートを提案する。
このサンドボックスは、フィードバック駆動の実験プラットフォームを提供し、コスト効率とデータとモデルの両方のガイド付き洗練を可能にする。
論文 参考訳(メタデータ) (2024-07-16T14:40:07Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - A hybrid machine learning framework for clad characteristics prediction
in metal additive manufacturing [0.0]
金属添加物製造(MAM)は大きな発展を遂げており、多くの注目を集めている。
MAMプロセスの複雑な性質から,MAMプリントクラッドの特性に対する処理パラメータの影響を予測することは困難である。
機械学習(ML)技術は、プロセスの基礎となる物理と処理パラメータをクラッド特性に結びつけるのに役立つ。
論文 参考訳(メタデータ) (2023-07-04T18:32:41Z) - Modular machine learning-based elastoplasticity: generalization in the
context of limited data [0.0]
エラスト塑性の定式化のモジュラリティに頼って,データの変動量に対処できるハイブリッドフレームワークについて論じる。
発見された物質モデルは、よく補間できるだけでなく、トレーニングデータの領域外から熱力学的に一貫した方法で正確な外挿を可能にする。
論文 参考訳(メタデータ) (2022-10-15T17:35:23Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Audacity of huge: overcoming challenges of data scarcity and data
quality for machine learning in computational materials discovery [1.0036312061637764]
機械学習(ML)に加速された発見は、予測構造とプロパティの関係を明らかにするために大量の高忠実度データを必要とする。
材料発見に関心を持つ多くの特性において、データ生成の挑戦的な性質と高いコストは、人口が少なく、疑わしい品質を持つデータランドスケープを生み出している。
手作業によるキュレーションがなければ、より洗練された自然言語処理と自動画像解析により、文献から構造-プロパティ関係を学習できるようになる。
論文 参考訳(メタデータ) (2021-11-02T21:43:58Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
本稿では、プロセスモデリング、材料均質化、機械学習に基づく統合データ駆動モデリングフレームワークを提案する。
我々は, 自動車, 航空宇宙, エレクトロニクス産業において重要な材料システムとして認識されてきた, 射出成形した短繊維強化複合材料に興味を持っている。
論文 参考訳(メタデータ) (2020-03-20T20:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。