CAARMA: Class Augmentation with Adversarial Mixup Regularization
- URL: http://arxiv.org/abs/2503.16718v1
- Date: Thu, 20 Mar 2025 21:41:16 GMT
- Title: CAARMA: Class Augmentation with Adversarial Mixup Regularization
- Authors: Massa Baali, Xiang Li, Hao Chen, Rita Singh, Bhiksha Raj,
- Abstract summary: CAARMA is a class augmentation framework for speaker verification.<n>We introduce synthetic classes through data mixing in the embedding space, expanding the number of training classes.<n>We evaluate CAARMA on multiple speaker verification tasks, as well as other representative zero-shot comparison-based speech analysis tasks.
- Score: 34.02819618734268
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Speaker verification is a typical zero-shot learning task, where inference of unseen classes is performed by comparing embeddings of test instances to known examples. The models performing inference must hence naturally generate embeddings that cluster same-class instances compactly, while maintaining separation across classes. In order to learn to do so, they are typically trained on a large number of classes (speakers), often using specialized losses. However real-world speaker datasets often lack the class diversity needed to effectively learn this in a generalizable manner. We introduce CAARMA, a class augmentation framework that addresses this problem by generating synthetic classes through data mixing in the embedding space, expanding the number of training classes. To ensure the authenticity of the synthetic classes we adopt a novel adversarial refinement mechanism that minimizes categorical distinctions between synthetic and real classes. We evaluate CAARMA on multiple speaker verification tasks, as well as other representative zero-shot comparison-based speech analysis tasks and obtain consistent improvements: our framework demonstrates a significant improvement of 8\% over all baseline models. Code for CAARMA will be released.
Related papers
- Covariance-based Space Regularization for Few-shot Class Incremental Learning [25.435192867105552]
Few-shot Class Incremental Learning (FSCIL) requires the model to continually learn new classes with limited labeled data.
Due to the limited data in incremental sessions, models are prone to overfitting new classes and suffering catastrophic forgetting of base classes.
Recent advancements resort to prototype-based approaches to constrain the base class distribution and learn discriminative representations of new classes.
arXiv Detail & Related papers (2024-11-02T08:03:04Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
arXiv Detail & Related papers (2023-12-08T18:24:08Z) - Subclass-balancing Contrastive Learning for Long-tailed Recognition [38.31221755013738]
Long-tailed recognition with imbalanced class distribution naturally emerges in practical machine learning applications.
We propose a novel subclass-balancing contrastive learning'' approach that clusters each head class into multiple subclasses of similar sizes as the tail classes.
We evaluate SBCL over a list of long-tailed benchmark datasets and it achieves the state-of-the-art performance.
arXiv Detail & Related papers (2023-06-28T05:08:43Z) - MASIL: Towards Maximum Separable Class Representation for Few Shot Class
Incremental Learning [27.661609140918916]
Few Shot Class Incremental Learning (FSCIL) with few examples per class for each incremental session is the realistic setting of continual learning.
We present the framework MASIL as a step towards learning the maximal separable classifier.
Experimental results on miniImageNet, CIFAR-100 and CUB-200 demonstrate that MASIL outperforms all the benchmarks.
arXiv Detail & Related papers (2023-04-08T13:31:02Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
We present a novel approach for novel detection using ensemble classification and evidence theory.
A pool selection strategy is presented to build a solid ensemble classifier.
We use uncertainty for the anomaly detection approach.
arXiv Detail & Related papers (2022-12-23T00:50:41Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Multi-Class Classification from Single-Class Data with Confidences [90.48669386745361]
We propose an empirical risk minimization framework that is loss-/model-/optimizer-independent.
We show that our method can be Bayes-consistent with a simple modification even if the provided confidences are highly noisy.
arXiv Detail & Related papers (2021-06-16T15:38:13Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
We propose a clustering-based model, which considers all training samples at once, instead of optimizing for each instance individually.
We call the proposed method CLASTER and observe that it consistently improves over the state-of-the-art in all standard datasets.
arXiv Detail & Related papers (2021-01-18T12:46:24Z) - One vs Previous and Similar Classes Learning -- A Comparative Study [2.208242292882514]
This work proposes three learning paradigms which allow trained models to be updated without the need of retraining from scratch.
Results show that the proposed paradigms are faster than the baseline at updating, with two of them being faster at training from scratch as well, especially on larger datasets.
arXiv Detail & Related papers (2021-01-05T00:28:38Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.