論文の概要: A Flexible Fairness Framework with Surrogate Loss Reweighting for Addressing Sociodemographic Disparities
- arxiv url: http://arxiv.org/abs/2503.16836v1
- Date: Fri, 21 Mar 2025 04:10:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:56:04.247854
- Title: A Flexible Fairness Framework with Surrogate Loss Reweighting for Addressing Sociodemographic Disparities
- Title(参考訳): ソシオドモグラフィーにおけるサロゲート損失再重み付けを用いたフレキシブルフェアネスフレームワーク
- Authors: Wen Xu, Elham Dolatabadi,
- Abstract要約: 本稿では,新たなアルゴリズムフレームワークである $boldsymbolalpha$boldbeta$ Fair Machine Learning (symbolalphasymbolbetabeta$ FML)を提案する。
我々のフレームワークでは、新しいサロゲート損失最小化を採用し、損失再重み付けと組み合わせることで、調整可能な属性による正確なトレードオフを可能にする。
- 参考スコア(独自算出の注目度): 2.057770398219001
- License:
- Abstract: This paper presents a new algorithmic fairness framework called $\boldsymbol{\alpha}$-$\boldsymbol{\beta}$ Fair Machine Learning ($\boldsymbol{\alpha}$-$\boldsymbol{\beta}$ FML), designed to optimize fairness levels across sociodemographic attributes. Our framework employs a new family of surrogate loss functions, paired with loss reweighting techniques, allowing precise control over fairness-accuracy trade-offs through tunable hyperparameters $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$. To efficiently solve the learning objective, we propose Parallel Stochastic Gradient Descent with Surrogate Loss (P-SGD-S) and establish convergence guarantees for both convex and nonconvex loss functions. Experimental results demonstrate that our framework improves overall accuracy while reducing fairness violations, offering a smooth trade-off between standard empirical risk minimization and strict minimax fairness. Results across multiple datasets confirm its adaptability, ensuring fairness improvements without excessive performance degradation.
- Abstract(参考訳): 本稿では,社会デミノグラフィー属性の公平度を最適化するために,$\boldsymbol{\alpha}$-$\boldsymbol{\beta}$ Fair Machine Learning(\boldsymbol{\alpha}$-$\boldsymbol{\beta}$ FML)と呼ばれる新しいアルゴリズムフェアネスフレームワークを提案する。
我々のフレームワークは、損失再重み付け技術と組み合わせて、調整可能なハイパーパラメータ$\boldsymbol{\alpha}$と$\boldsymbol{\beta}$を通じて、公正さと精度のトレードオフを正確に制御できる新しい代理損失関数のファミリーを採用している。
学習目的を効率的に解くために,Surrogate Loss (P-SGD-S) を用いた並列確率勾配Descentを提案し,凸損失関数と非凸損失関数の収束保証を確立する。
実験結果から,本フレームワークは,標準実証リスク最小化と厳密なミニマックスフェアネスのトレードオフを円滑に行うことにより,公平性違反を低減しつつ,全体的な精度の向上を図っている。
複数のデータセットにわたる結果は、適応性を確認し、過剰なパフォーマンス劣化を伴わずに、公正性の向上を保証する。
関連論文リスト
- Energy Score-based Pseudo-Label Filtering and Adaptive Loss for Imbalanced Semi-supervised SAR target recognition [1.2035771704626825]
既存の半教師付きSAR ATRアルゴリズムは、クラス不均衡の場合、認識精度が低い。
この研究は、動的エネルギースコアと適応損失を用いた非平衡半教師付きSAR目標認識手法を提供する。
論文 参考訳(メタデータ) (2024-11-06T14:45:16Z) - Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
バイアスを緩和する現在の方法は、情報損失と精度と公平性のバランスが不十分であることが多い。
本稿では,二段階最適化の原理に基づく新しい手法を提案する。
私たちのディープラーニングベースのアプローチは、正確性と公平性の両方を同時に最適化します。
論文 参考訳(メタデータ) (2024-10-21T18:53:39Z) - LEARN: An Invex Loss for Outlier Oblivious Robust Online Optimization [56.67706781191521]
敵は、学習者に未知の任意の数kの損失関数を破損させることで、外れ値を導入することができる。
我々は,任意の数kで損失関数を破損させることで,敵が外乱を発生させることができる,頑健なオンラインラウンド最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-12T17:08:31Z) - Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning [49.417414031031264]
本稿では,自己教師型学習環境におけるフェアエンコーダの学習について検討する。
すべてのデータはラベル付けされておらず、そのごく一部だけが機密属性で注釈付けされている。
論文 参考訳(メタデータ) (2024-06-09T08:11:12Z) - Expressive Losses for Verified Robustness via Convex Combinations [67.54357965665676]
本研究では, 過近似係数と異なる表現的損失に対する性能分布の関係について検討した。
表現性が不可欠である一方で、最悪の場合の損失のより良い近似は、必ずしも優れた堅牢性-正確性トレードオフに結びついていないことを示す。
論文 参考訳(メタデータ) (2023-05-23T12:20:29Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
公正な制約を課すための詳細なデータ拡張戦略を提案する。
グループ間の感性のある特徴の遷移経路のモデルを正規化することにより、グループフェアネスを実現することができることを示す。
提案手法はデータ生成モデルを仮定せず,精度と公平性の両方に優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-04-01T11:23:00Z) - SLIDE: a surrogate fairness constraint to ensure fairness consistency [1.3649494534428745]
本稿では, SLIDE と呼ばれる新しい代用フェアネス制約を提案し, 高速収束率を実現する。
数値実験により、SLIDEは様々なベンチマークデータセットでうまく機能することを確認した。
論文 参考訳(メタデータ) (2022-02-07T13:50:21Z) - Label Distributionally Robust Losses for Multi-class Classification:
Consistency, Robustness and Adaptivity [55.29408396918968]
多クラス分類のためのラベル分布ロバスト(LDR)損失という損失関数群について検討した。
我々の貢献は、多クラス分類のためのLDR損失のトップ$kの一貫性を確立することによって、一貫性と堅牢性の両方を含んでいる。
本稿では,各インスタンスのクラスラベルの雑音度に個別化温度パラメータを自動的に適応させる適応型LDR損失を提案する。
論文 参考訳(メタデータ) (2021-12-30T00:27:30Z) - The Devil is in the Margin: Margin-based Label Smoothing for Network
Calibration [21.63888208442176]
ディープニューラルネットワークの優位な性能にもかかわらず、最近の研究では、それらが十分に校正されていないことが示されている。
現状のキャリブレーション損失に対する統一的制約最適化の視点を提供する。
我々は不等式制約に基づく単純で柔軟な一般化を提案し、ロジット距離に制御可能なマージンを課す。
論文 参考訳(メタデータ) (2021-11-30T14:21:47Z) - Black-Box Certification with Randomized Smoothing: A Functional
Optimization Based Framework [60.981406394238434]
本稿では,非ガウス雑音とより一般的な攻撃に対する対向的認証の一般的な枠組みを提案する。
提案手法は,従来の手法よりも優れた認証結果を得るとともに,ランダム化スムーズな認証の新たな視点を提供する。
論文 参考訳(メタデータ) (2020-02-21T07:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。