A New Segment Routing method with Swap Node Selection Strategy Based on Deep Reinforcement Learning for Software Defined Network
- URL: http://arxiv.org/abs/2503.16914v1
- Date: Fri, 21 Mar 2025 07:24:09 GMT
- Title: A New Segment Routing method with Swap Node Selection Strategy Based on Deep Reinforcement Learning for Software Defined Network
- Authors: Miao Ye, Jihao Zheng, Qiuxiang Jiang, Yuan Huang, Ziheng Wang, Yong Wang,
- Abstract summary: This paper establishes an optimization model that can simultaneously form routing strategies and path segmentation strategies.<n>It also designs an intelligent segment routing algorithm based on deep reinforcement learning (DRL-SR) to solve the proposed model.
- Score: 8.849321340163025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existing segment routing (SR) methods need to determine the routing first and then use path segmentation approaches to select swap nodes to form a segment routing path (SRP). They require re-segmentation of the path when the routing changes. Furthermore, they do not consider the flow table issuance time, which cannot maximize the speed of issuance flow table. To address these issues, this paper establishes an optimization model that can simultaneously form routing strategies and path segmentation strategies for selecting the appropriate swap nodes to reduce flow table issuance time. It also designs an intelligent segment routing algorithm based on deep reinforcement learning (DRL-SR) to solve the proposed model. First, a traffic matrix is designed as the state space for the deep reinforcement learning agent; this matrix includes multiple QoS performance indicators, flow table issuance time overhead and SR label stack depth. Second, the action selection strategy and corresponding reward function are designed, where the agent selects the next node considering the routing; in addition, the action selection strategy whether the newly added node is selected as the swap node and the corresponding reward function are designed considering the time cost factor for the controller to issue the flow table to the swap node. Finally, a series of experiments and their results show that, compared with the existing methods, the designed segmented route optimization model and the intelligent solution algorithm (DRL-SR) can reduce the time overhead required to complete the segmented route establishment task while optimizing performance metrics such as throughput, delays and packet losses.
Related papers
- Opportunistic Routing in Wireless Communications via Learnable State-Augmented Policies [80.80660533499943]
This paper addresses the challenge of packet-based information routing in large-scale wireless communication networks.<n>Opportunistic routing exploits the broadcast nature of wireless communication to dynamically select optimal forwarding nodes.<n>We propose a State-Augmentation (SA) based distributed optimization approach aimed at maximizing the total information handled by the source nodes in the network.
arXiv Detail & Related papers (2025-03-05T18:44:56Z) - Joint Optimal Transport and Embedding for Network Alignment [66.49765320358361]
We propose a joint optimal transport and embedding framework for network alignment named JOENA.<n>With a unified objective, the mutual benefits of both methods can be achieved by an alternating optimization schema with guaranteed convergence.<n>Experiments on real-world networks validate the effectiveness and scalability of JOENA, achieving up to 16% improvement in MRR and 20x speedup.
arXiv Detail & Related papers (2025-02-26T17:28:08Z) - SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought [78.53885607559958]
A novel approach using vision language models (VLMs) is proposed for enabling path planning in complex wireless-aware environments.<n>To this end, insights from a digital twin with real-world wireless ray tracing data are explored.<n>Results show that SCoTT achieves very close average path gains compared to DP-WA* while at the same time yielding consistently shorter path lengths.
arXiv Detail & Related papers (2024-11-27T10:45:49Z) - Intelligent Routing Algorithm over SDN: Reusable Reinforcement Learning Approach [1.799933345199395]
We develop a reusable RL-aware, reusable routing algorithm, RLSR-Routing over SDN.
Our algorithm shows better performance in terms of load balancing than the traditional approaches.
It also has faster convergence than the non-reusable RL approach when finding paths for multiple traffic demands.
arXiv Detail & Related papers (2024-09-23T17:15:24Z) - A Deep Reinforcement Learning Approach for Adaptive Traffic Routing in
Next-gen Networks [1.1586742546971471]
Next-gen networks require automation and adaptively adjust network configuration based on traffic dynamics.
Traditional techniques that decide traffic policies are usually based on hand-crafted programming optimization and algorithms.
We develop a deep reinforcement learning (DRL) approach for adaptive traffic routing.
arXiv Detail & Related papers (2024-02-07T01:48:29Z) - Robust Path Selection in Software-defined WANs using Deep Reinforcement
Learning [18.586260468459386]
We propose a data-driven algorithm that does the path selection in the network considering the overhead of route computation and path updates.
Our scheme fares well by a factor of 40% with respect to reducing link utilization compared to traditional TE schemes such as ECMP.
arXiv Detail & Related papers (2022-12-21T16:08:47Z) - Proactive Resilient Transmission and Scheduling Mechanisms for mmWave
Networks [29.17280879786624]
This paper aims to develop resilient transmission mechanisms to suitably distribute traffic across multiple paths in an arbitrary millimeter-wave (mmWave) network.
To achieve resilience to link failures, a state-of-the-art Soft Actor-Critic DRL, which adapts the information flow through the network, is investigated.
arXiv Detail & Related papers (2022-11-17T02:52:27Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
Entanglement routing establishes remote entanglement connection between two arbitrary nodes.
We propose purification-enabled entanglement routing designs to provide fidelity guarantee for multiple Source-Destination (SD) pairs in quantum networks.
arXiv Detail & Related papers (2021-11-15T14:07:22Z) - CARL-DTN: Context Adaptive Reinforcement Learning based Routing
Algorithm in Delay Tolerant Network [0.0]
Delay/Disruption-Tolerant Networks (DTN) invented to describe and cover all types of long-delay, disconnected, intermittently connected networks.
This study proposes context-adaptive reinforcement learning based routing protocol to determine optimal replicas of the message based on the real-time density.
arXiv Detail & Related papers (2021-05-02T20:08:17Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
This paper proposes a new deep-unfolding-based network design for the problem of Robust Principal Component Analysis (RPCA)
Unlike existing designs, our approach focuses on modeling the temporal correlation between the sparse representations of consecutive video frames.
Experimentation using the moving MNIST dataset shows that the proposed network outperforms a recently proposed state-of-the-art RPCA network in the task of video foreground-background separation.
arXiv Detail & Related papers (2020-10-02T11:40:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.