Robust Path Selection in Software-defined WANs using Deep Reinforcement
Learning
- URL: http://arxiv.org/abs/2212.11155v2
- Date: Thu, 22 Dec 2022 04:45:15 GMT
- Title: Robust Path Selection in Software-defined WANs using Deep Reinforcement
Learning
- Authors: Shahrooz Pouryousef, Lixin Gao and Don Towsley
- Abstract summary: We propose a data-driven algorithm that does the path selection in the network considering the overhead of route computation and path updates.
Our scheme fares well by a factor of 40% with respect to reducing link utilization compared to traditional TE schemes such as ECMP.
- Score: 18.586260468459386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of an efficient network traffic engineering process where the
network continuously measures a new traffic matrix and updates the set of paths
in the network, an automated process is required to quickly and efficiently
identify when and what set of paths should be used. Unfortunately, the burden
of finding the optimal solution for the network updating process in each given
time interval is high since the computation complexity of optimization
approaches using linear programming increases significantly as the size of the
network increases. In this paper, we use deep reinforcement learning to derive
a data-driven algorithm that does the path selection in the network considering
the overhead of route computation and path updates. Our proposed scheme
leverages information about past network behavior to identify a set of robust
paths to be used for multiple future time intervals to avoid the overhead of
updating the forwarding behavior of routers frequently. We compare the results
of our approach to other traffic engineering solutions through extensive
simulations across real network topologies. Our results demonstrate that our
scheme fares well by a factor of 40% with respect to reducing link utilization
compared to traditional TE schemes such as ECMP. Our scheme provides a slightly
higher link utilization (around 25%) compared to schemes that only minimize
link utilization and do not care about path updating overhead.
Related papers
- Intelligent Routing Algorithm over SDN: Reusable Reinforcement Learning Approach [1.799933345199395]
We develop a reusable RL-aware, reusable routing algorithm, RLSR-Routing over SDN.
Our algorithm shows better performance in terms of load balancing than the traditional approaches.
It also has faster convergence than the non-reusable RL approach when finding paths for multiple traffic demands.
arXiv Detail & Related papers (2024-09-23T17:15:24Z) - A Deep Reinforcement Learning Approach for Adaptive Traffic Routing in
Next-gen Networks [1.1586742546971471]
Next-gen networks require automation and adaptively adjust network configuration based on traffic dynamics.
Traditional techniques that decide traffic policies are usually based on hand-crafted programming optimization and algorithms.
We develop a deep reinforcement learning (DRL) approach for adaptive traffic routing.
arXiv Detail & Related papers (2024-02-07T01:48:29Z) - Learning State-Augmented Policies for Information Routing in
Communication Networks [92.59624401684083]
We develop a novel State Augmentation (SA) strategy to maximize the aggregate information at source nodes using graph neural network (GNN) architectures.
We leverage an unsupervised learning procedure to convert the output of the GNN architecture to optimal information routing strategies.
In the experiments, we perform the evaluation on real-time network topologies to validate our algorithms.
arXiv Detail & Related papers (2023-09-30T04:34:25Z) - An Intelligent SDWN Routing Algorithm Based on Network Situational
Awareness and Deep Reinforcement Learning [4.085916808788356]
This article introduces an intelligent routing algorithm (DRL-PPONSA) based on deep reinforcement learning with network situational awareness.
Experimental results show that DRL-PPONSA outperforms traditional routing methods in network throughput, delay, packet loss rate, and wireless node distance.
arXiv Detail & Related papers (2023-05-12T14:18:09Z) - Proactive Resilient Transmission and Scheduling Mechanisms for mmWave
Networks [29.17280879786624]
This paper aims to develop resilient transmission mechanisms to suitably distribute traffic across multiple paths in an arbitrary millimeter-wave (mmWave) network.
To achieve resilience to link failures, a state-of-the-art Soft Actor-Critic DRL, which adapts the information flow through the network, is investigated.
arXiv Detail & Related papers (2022-11-17T02:52:27Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
Entanglement routing establishes remote entanglement connection between two arbitrary nodes.
We propose purification-enabled entanglement routing designs to provide fidelity guarantee for multiple Source-Destination (SD) pairs in quantum networks.
arXiv Detail & Related papers (2021-11-15T14:07:22Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Relational Deep Reinforcement Learning for Routing in Wireless Networks [2.997420836766863]
We develop a distributed routing strategy based on deep reinforcement learning that generalizes to diverse traffic patterns, congestion levels, network connectivity, and link dynamics.
Our algorithm outperforms shortest path and backpressure routing with respect to packets delivered and delay per packet.
arXiv Detail & Related papers (2020-12-31T16:28:21Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.