Exploring the Efficacy of Partial Denoising Using Bit Plane Slicing for Enhanced Fracture Identification: A Comparative Study of Deep Learning-Based Approaches and Handcrafted Feature Extraction Techniques
- URL: http://arxiv.org/abs/2503.17030v1
- Date: Fri, 21 Mar 2025 10:39:21 GMT
- Title: Exploring the Efficacy of Partial Denoising Using Bit Plane Slicing for Enhanced Fracture Identification: A Comparative Study of Deep Learning-Based Approaches and Handcrafted Feature Extraction Techniques
- Authors: Snigdha Paul, Sambit Mallick, Anindya Sen,
- Abstract summary: Bit plane slicing enhances medical images by reducing noise interference and extracting informative features.<n>This research explores partial denoising techniques to provide solutions for improved fracture analysis.<n>The outcomes of this research provide valuable insights into the development of efficient preprocessing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision has transformed medical diagnosis, treatment, and research through advanced image processing and machine learning techniques. Fracture classification, a critical area in healthcare, has greatly benefited from these advancements, yet accurate detection is challenged by complex patterns and image noise. Bit plane slicing enhances medical images by reducing noise interference and extracting informative features. This research explores partial denoising techniques to provide practical solutions for improved fracture analysis, ultimately enhancing patient care. The study explores deep learning model DenseNet and handcrafted feature extraction. Decision Tree and Random Forest, were employed to train and evaluate distinct image representations. These include the original image, the concatenation of the four bit planes from the LSB as well as MSB, the fully denoised image, and an image consisting of 6 bit planes from MSB and 2 denoised bit planes from LSB. The purpose of forming these diverse image representations is to analyze SNR as well as classification accuracy and identify the bit planes that contain the most informative features. Moreover, the study delves into the significance of partial denoising techniques in preserving crucial features, leading to improvements in classification results. Notably, this study shows that employing the Random Forest classifier, the partially denoised image representation exhibited a testing accuracy of 95.61% surpassing the performance of other image representations. The outcomes of this research provide valuable insights into the development of efficient preprocessing, feature extraction and classification approaches for fracture identification. By enhancing diagnostic accuracy, these advancements hold the potential to positively impact patient care and overall medical outcomes.
Related papers
- Contextual Checkerboard Denoise -- A Novel Neural Network-Based Approach for Classification-Aware OCT Image Denoising [1.8032335403003321]
We introduce a novel neural network based method -- emphContextual Checkerboard Denoising, that can learn denoising from only a dataset of noisy images.<n>Our proposed method significantly improves image quality, providing clearer and more detailed OCT images, while enhancing diagnostic accuracy.
arXiv Detail & Related papers (2024-11-29T08:51:43Z) - Convolutional Neural Networks Towards Facial Skin Lesions Detection [0.0]
This study contributes by providing a model that facilitates the detection of blemishes and skin lesions on facial images.
The proposed method offers advantages such as simple architecture, speed and suitability for image processing.
arXiv Detail & Related papers (2024-02-13T16:52:10Z) - Intelligent Cervical Spine Fracture Detection Using Deep Learning
Methods [0.0]
This paper introduces a two-stage pipeline designed to identify the presence of cervical vertebrae in each image slice.
In the first stage, a multi-input network, incorporating image and image metadata, is trained.
In the second stage, a YOLOv8 model is trained to detect fractures within the images, and its effectiveness is compared to YOLOv5.
arXiv Detail & Related papers (2023-11-09T19:34:42Z) - Exploiting Causality Signals in Medical Images: A Pilot Study with
Empirical Results [1.2400966570867322]
We present a novel technique to discover and exploit weak causal signals directly from images via neural networks for classification purposes.
This way, we model how the presence of a feature in one part of the image affects the appearance of another feature in a different part of the image.
Our method consists of a convolutional neural network backbone and a causality-factors extractor module, which computes weights to enhance each feature map according to its causal influence in the scene.
arXiv Detail & Related papers (2023-09-19T08:00:26Z) - LOTUS: Learning to Optimize Task-based US representations [39.81131738128329]
Anatomical segmentation of organs in ultrasound images is essential to many clinical applications.
Existing deep neural networks require a large amount of labeled data for training in order to achieve clinically acceptable performance.
In this paper, we propose a novel approach for learning to optimize task-based ultra-sound image representations.
arXiv Detail & Related papers (2023-07-29T16:29:39Z) - DEMIST: A deep-learning-based task-specific denoising approach for
myocardial perfusion SPECT [17.994633874783144]
We propose a Detection task-specific deep-learning-based approach for denoising MPI SPECT images (DEMIST)
The approach, while performing denoising, is designed to preserve features that influence observer performance on detection tasks.
The results provide strong evidence for further clinical evaluation of DEMIST to denoise low-count images in MPI SPECT.
arXiv Detail & Related papers (2023-06-07T08:40:25Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
This study develops an algorithm for calculating bone growth in contact with metallic implants.
Bone and implant tissue were manually segmented in the training data set.
In terms of network accuracy, the model reached around 98%.
arXiv Detail & Related papers (2022-04-22T08:17:20Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.