論文の概要: Generative adversarial framework to calibrate excursion set models for the 3D morphology of all-solid-state battery cathodes
- arxiv url: http://arxiv.org/abs/2503.17171v1
- Date: Fri, 21 Mar 2025 14:18:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:58:26.403360
- Title: Generative adversarial framework to calibrate excursion set models for the 3D morphology of all-solid-state battery cathodes
- Title(参考訳): 全固体バッテリ陰極の3次元形態に対する探索セットモデルのキャリブレーションのための生成的逆方向フレームワーク
- Authors: Orkun Furat, Sabrina Weber, Johannes Schubert, René Rekers, Maximilian Luczak, Erik Glatt, Andreas Wiegmann, Jürgen Janek, Anja Bielefeld, Volker Schmidt,
- Abstract要約: 本稿では,低パラメトリック幾何モデルを用いて,機能性材料の仮想3次元形態を生成する手法を提案する。
これらのデジタルツインは、仮想材料テストのためにデプロイできる様々な形態をシミュレートするために、体系的なパラメータのバリエーションを可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a computational method for generating virtual 3D morphologies of functional materials using low-parametric stochastic geometry models, i.e., digital twins, calibrated with 2D microscopy images. These digital twins allow systematic parameter variations to simulate various morphologies, that can be deployed for virtual materials testing by means of spatially resolved numerical simulations of macroscopic properties. Generative adversarial networks (GANs) have gained popularity for calibrating models to generate realistic 3D morphologies. However, GANs often comprise of numerous uninterpretable parameters make systematic variation of morphologies for virtual materials testing challenging. In contrast, low-parametric stochastic geometry models (e.g., based on Gaussian random fields) enable targeted variation but may struggle to mimic complex morphologies. Combining GANs with advanced stochastic geometry models (e.g., excursion sets of more general random fields) addresses these limitations, allowing model calibration solely from 2D image data. This approach is demonstrated by generating a digital twin of all-solid-state battery (ASSB) cathodes. Since the digital twins are parametric, they support systematic exploration of structural scenarios and their macroscopic properties. The proposed method facilitates simulation studies for optimizing 3D morphologies, benefiting not only ASSB cathodes but also other materials with similar structures.
- Abstract(参考訳): 本稿では,低パラメトリック確率幾何学モデル,すなわち2次元顕微鏡画像でキャリブレーションしたディジタルツインを用いて,機能材料の仮想3次元形態を生成する計算手法を提案する。
これらのディジタルツインは、様々な形態をシミュレートするための体系的なパラメータ変動を可能にし、空間的に解決されたマクロ特性の数値シミュレーションを用いて仮想材料試験にデプロイすることができる。
GAN(Generative Adversarial Network)は、現実的な3D形態を生成するためのモデルの校正で人気を集めている。
しかし、多くの非解釈パラメータからなるGANは、仮想材料試験のための体系的な形態変化を困難にしている。
対照的に、低パラメトリック確率幾何学モデル(例えばガウス確率場に基づく)は対象の変動を可能にするが、複雑な形態を模倣するのに苦労する。
GANと高度な確率幾何学モデル(例えば、より一般的なランダムフィールドの探索集合)を組み合わせることで、モデルキャリブレーションを2次元画像データからのみ行うことができる。
このアプローチは、全固体電池(ASSB)カソードのディジタル双極子を生成することによって実証される。
デジタル双生児はパラメトリックであるため、構造シナリオとそのマクロ特性の体系的な探索を支援する。
提案手法は, ASSBカソードだけでなく, 類似構造を持つ材料にも有効である。
関連論文リスト
- Geometric Trajectory Diffusion Models [58.853975433383326]
生成モデルは3次元幾何学システムの生成において大きな可能性を示してきた。
既存のアプローチは静的構造のみで動作し、物理系は常に自然界において動的であるという事実を無視する。
本研究では3次元軌跡の時間分布をモデル化する最初の拡散モデルである幾何軌道拡散モデル(GeoTDM)を提案する。
論文 参考訳(メタデータ) (2024-10-16T20:36:41Z) - Deep learning-based Visual Measurement Extraction within an Adaptive Digital Twin Framework from Limited Data Using Transfer Learning [0.0]
Digital Twinsの技術は、モデルとシミュレーションをリアルタイムデータに統合することによって、科学的研究における意思決定に革命をもたらしている。
本研究は,人工知能を用いた新しいアプローチを提案する。
畳み込みニューラルネットワークを用いて、デジタル画像相関スペックルパターン画像と変形場とを関連づけることで、リアルタイムで構造挙動を解析する。
論文 参考訳(メタデータ) (2024-10-07T18:10:12Z) - Generating multi-scale NMC particles with radial grain architectures using spatial stochastics and GANs [0.0]
電極性能と陰極粒子の形態の関係は 難しい。
現在では、代表性を達成するために、完全な粒度の細かい粒子を多数画像化することは不可能である。
2次元データから代表的3次元情報を生成する立体生成対向ネットワーク(GAN)に基づくモデルフィッティング手法を提案する。
一度校正すると、このマルチスケールモデルは、統計的に実験データに類似した仮想陰極粒子を迅速に生成することができる。
論文 参考訳(メタデータ) (2024-07-07T11:23:17Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation [4.169915659794567]
2次元から3次元への次元展開は、現在の技術的観点から非常に難しい逆問題と見なされている。
U-netのマルチスケール特性とGANの生成能力を統合する新しい生成モデルが提案されている。
さらに、画像正規化損失とワッサーシュタイン距離損失を組み合わせることにより、モデルの精度をさらに向上する。
論文 参考訳(メタデータ) (2024-02-24T13:42:34Z) - Using convolutional neural networks for stereological characterization
of 3D hetero-aggregates based on synthetic STEM data [0.0]
パラメトリックな3Dモデルが提示され、そこから多数の仮想ヘテロアグリゲートが生成される。
仮想構造は、仮想走査透過電子顕微鏡(STEM)画像を生成するために物理シミュレーションツールに渡される。
畳み込みニューラルネットワークは、2次元STEM画像からヘテロアグリゲートの3次元構造を予測するために訓練される。
論文 参考訳(メタデータ) (2023-10-27T22:49:08Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - MeshDiffusion: Score-based Generative 3D Mesh Modeling [68.40770889259143]
本研究では,シーンの自動生成と物理シミュレーションのための現実的な3次元形状生成の課題について考察する。
メッシュのグラフ構造を利用して、3Dメッシュを生成するのにシンプルだが非常に効果的な生成モデリング手法を用いる。
具体的には、変形可能な四面体格子でメッシュを表現し、この直接パラメトリゼーション上で拡散モデルを訓練する。
論文 参考訳(メタデータ) (2023-03-14T17:59:01Z) - {\phi}-SfT: Shape-from-Template with a Physics-Based Deformation Model [69.27632025495512]
Shape-from-Template (SfT) 法では、単一の単眼RGBカメラから3次元表面の変形を推定する。
本稿では,物理シミュレーションによる2次元観察を解説する新しいSfT手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T17:59:57Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Dynamic multi feature-class Gaussian process models [0.0]
本研究では, 医用画像における形状, ポーズ, 強度特徴の自動学習のための統計的モデリング手法を提案する。
DMFC-GPM (DMFC-GPM) はガウス過程(GP)に基づくモデルであり、線形および非線形の変動を符号化する潜在空間を共有する。
モデル性能の結果は、この新しいモデリングパラダイムが堅牢で、正確で、アクセス可能であり、潜在的な応用があることを示唆している。
論文 参考訳(メタデータ) (2021-12-08T15:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。