論文の概要: ML-Based Bidding Price Prediction for Pay-As-Bid Ancillary Services Markets: A Use Case in the German Control Reserve Market
- arxiv url: http://arxiv.org/abs/2503.17214v1
- Date: Fri, 21 Mar 2025 15:21:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:57:50.006966
- Title: ML-Based Bidding Price Prediction for Pay-As-Bid Ancillary Services Markets: A Use Case in the German Control Reserve Market
- Title(参考訳): MLに基づく従量制サービス市場における入札価格予測--ドイツ・コントロール・リザーブ市場を事例として
- Authors: Vincent Bezold, Lukas Baur, Alexander Sauer,
- Abstract要約: 本稿では,ドイツ支配予備市場を中心に,従量制サービス市場における入札価格の予測手法を提案する。
サポートベクトル回帰、決定木、k-Nearest Neighborsなど、さまざまな機械学習モデルを評価し、ベンチマークモデルと比較する。
分析の結果,提案手法はベースラインモデルと比較して27.43%から37.31%に改善することが示された。
- 参考スコア(独自算出の注目度): 45.62331048595689
- License:
- Abstract: The increasing integration of renewable energy sources has led to greater volatility and unpredictability in electricity generation, posing challenges to grid stability. Ancillary service markets, such as the German control reserve market, allow industrial consumers and producers to offer flexibility in their power consumption or generation, contributing to grid stability while earning additional income. However, many participants use simple bidding strategies that may not maximize their revenues. This paper presents a methodology for forecasting bidding prices in pay-as-bid ancillary service markets, focusing on the German control reserve market. We evaluate various machine learning models, including Support Vector Regression, Decision Trees, and k-Nearest Neighbors, and compare their performance against benchmark models. To address the asymmetry in the revenue function of pay-as-bid markets, we introduce an offset adjustment technique that enhances the practical applicability of the forecasting models. Our analysis demonstrates that the proposed approach improves potential revenues by 27.43 % to 37.31 % compared to baseline models. When analyzing the relationship between the model forecasting errors and the revenue, a negative correlation is measured for three markets; according to the results, a reduction of 1 EUR/MW model price forecasting error (MAE) statistically leads to a yearly revenue increase between 483 EUR/MW and 3,631 EUR/MW. The proposed methodology enables industrial participants to optimize their bidding strategies, leading to increased earnings and contributing to the efficiency and stability of the electrical grid.
- Abstract(参考訳): 再生可能エネルギー源の統合が増加すると、発電のボラティリティと予測不能が増加し、グリッドの安定性が課題となっている。
ドイツのコントロール・リザーブ市場のような補助サービス市場は、工業消費者や生産者が電力消費や発電に柔軟性を提供し、さらなる収入を得ながらグリッドの安定性に寄与する。
しかし、多くの参加者は、収益を最大化しない単純な入札戦略を使用している。
本稿では,ドイツ支配予備市場を中心に,従量制サービス市場における入札価格の予測手法を提案する。
サポートベクトル回帰、決定木、k-Nearest Neighborsなど、さまざまな機械学習モデルを評価し、ベンチマークモデルと比較する。
ペイ・アズ・バイド市場の収益関数の非対称性に対処するために,予測モデルの実用性を高めるオフセット調整手法を導入する。
分析の結果,提案手法はベースラインモデルと比較して27.43%から37.31%に改善することが示された。
モデル予測誤差と収益の関係を分析する際、3つの市場において負の相関が測定され、1EUR/MWモデル価格予測誤差(MAE)が統計的に減少すると、年間収益が483EUR/MWから3,631EUR/MWに増加する。
提案手法により, 産業参加者の入札戦略の最適化が可能となり, 収益が増加し, 電力網の効率性と安定性に寄与する。
関連論文リスト
- Deep Learning-Based Electricity Price Forecast for Virtual Bidding in Wholesale Electricity Market [3.130428666578115]
本研究では,ERCOT(Electric Reliability Council of Texas)市場におけるリアルタイム電力価格と日頭電力価格の間に広がる価格を予測するためのトランスフォーマーに基づくディープラーニングモデルを提案する。
提案したモデルは現実的な制約の下で訓練され、毎週モデルを更新してウォーキングフォワードアプローチを用いて検証される。
その結果, ピーク時のみの取引戦略が50%を超える精度で, ほぼ一貫した利益をもたらすことがわかった。
論文 参考訳(メタデータ) (2024-11-25T20:04:16Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Improving Sequential Market Coordination via Value-oriented Renewable Energy Forecasting [3.0665531066360066]
本稿では,実運用段階においてより効率的にRIEQ(RES Improved Entering Quantities)を決定するために,価値指向予測(value-oriented forecasting)と呼ばれるトレーニングされた予測モデルを提案する。
統計的予測誤差を最小化する従来のモデルとは異なり、我々のアプローチはパラメータを訓練し、DA市場とRT市場の両方で期待される全体の運用コストを最小化する。
論文 参考訳(メタデータ) (2024-05-15T00:04:08Z) - Electricity Price Forecasting in the Irish Balancing Market [0.0]
この研究は、広く研究されている日頭市場で成功した様々な価格予測手法をアイルランドのバランス市場に適用する。
異なるトレーニングサイズの影響を調査するフレームワークを用いて,統計モデル,機械学習モデル,ディープラーニングモデルを比較した。
大規模な数値的な研究により、日頭市場における良いパフォーマンスのモデルはバランスの取れないモデルではうまく機能しないことが示された。
論文 参考訳(メタデータ) (2024-02-09T15:18:00Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Finding Regularized Competitive Equilibria of Heterogeneous Agent
Macroeconomic Models with Reinforcement Learning [151.03738099494765]
労働市場に参入する世帯や企業を無限に数える異種エージェントマクロ経済モデルについて検討する。
本稿では,モデルの正規化競争均衡を求めるデータ駆動強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-24T17:16:27Z) - Predictive Accuracy of a Hybrid Generalized Long Memory Model for Short
Term Electricity Price Forecasting [0.0]
本研究では、一般化長メモリ自己回帰モデル(k-factor GARMA)に基づく新しいハイブリッドモデルの予測性能について検討する。
提案モデルの性能を北プール電力市場のデータを用いて評価した。
論文 参考訳(メタデータ) (2022-04-18T12:21:25Z) - Hybrid Modelling Approaches for Forecasting Energy Spot Prices in EPEC
market [62.997667081978825]
EPEC市場におけるエネルギースポット価格予測のためのハイブリッドモデリング手法について検討する。
データは2013-2014年の電力価格、2015年のテストデータで提供された。
論文 参考訳(メタデータ) (2020-10-14T12:45:53Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
近年の研究では、時間単位のドイツの日内連続市場は弱い状態にあることが示されている。
時間内電力価格の確率予測は、トレーディングウィンドウ毎に軌跡をシミュレートして行う。
この調査は、過去3時間でドイツの日内連続市場における価格分布を予測することを目的としているが、このアプローチは、特にヨーロッパでは、他の連続市場への適用を可能にする。
論文 参考訳(メタデータ) (2020-05-04T10:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。