論文の概要: Neuro-Symbolic Scene Graph Conditioning for Synthetic Image Dataset Generation
- arxiv url: http://arxiv.org/abs/2503.17224v1
- Date: Fri, 21 Mar 2025 15:26:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:58:47.033066
- Title: Neuro-Symbolic Scene Graph Conditioning for Synthetic Image Dataset Generation
- Title(参考訳): 合成画像データセット生成のためのニューロシンボリックシーングラフコンディショニング
- Authors: Giacomo Savazzi, Eugenio Lomurno, Cristian Sbrolli, Agnese Chiatti, Matteo Matteucci,
- Abstract要約: 本稿では,合成画像データセット生成におけるニューロ・シンボリック条件付けの有用性について検討する。
シーングラフの形で構造化された記号表現が,関係制約を明示的に符号化することで,合成データ品質を向上させることができるかどうかを検討する。
その結果、Neuro-Symbolic条件付けは標準リコール基準で最大2.59%、データセット拡張時にNo Graph Constraint Recall基準で+2.83%の大幅な改善をもたらすことが示された。
- 参考スコア(独自算出の注目度): 3.8143958643887
- License:
- Abstract: As machine learning models increase in scale and complexity, obtaining sufficient training data has become a critical bottleneck due to acquisition costs, privacy constraints, and data scarcity in specialised domains. While synthetic data generation has emerged as a promising alternative, a notable performance gap remains compared to models trained on real data, particularly as task complexity grows. Concurrently, Neuro-Symbolic methods, which combine neural networks' learning strengths with symbolic reasoning's structured representations, have demonstrated significant potential across various cognitive tasks. This paper explores the utility of Neuro-Symbolic conditioning for synthetic image dataset generation, focusing specifically on improving the performance of Scene Graph Generation models. The research investigates whether structured symbolic representations in the form of scene graphs can enhance synthetic data quality through explicit encoding of relational constraints. The results demonstrate that Neuro-Symbolic conditioning yields significant improvements of up to +2.59% in standard Recall metrics and +2.83% in No Graph Constraint Recall metrics when used for dataset augmentation. These findings establish that merging Neuro-Symbolic and generative approaches produces synthetic data with complementary structural information that enhances model performance when combined with real data, providing a novel approach to overcome data scarcity limitations even for complex visual reasoning tasks.
- Abstract(参考訳): 機械学習モデルがスケールと複雑さを増すにつれ、取得コスト、プライバシーの制約、専門分野におけるデータの不足などにより、十分なトレーニングデータを取得することが重要なボトルネックとなっている。
合成データ生成は有望な代替手段として登場したが、特にタスクの複雑さが増大するにつれて、実際のデータでトレーニングされたモデルと比較して、注目すべきパフォーマンスのギャップが残っている。
同時に、ニューラルネットワークの学習強度と記号的推論の構造化表現を組み合わせたニューロ・シンボリック法は、様々な認知タスクにおいて有意義な可能性を証明している。
本稿では,合成画像データセット生成におけるニューロ・シンボリック・コンディショニングの有用性について検討し,シーングラフ生成モデルの性能向上に着目した。
本研究では,シーングラフ形式の構造化記号表現が,関係制約を明示的に符号化することで,合成データ品質を向上させることができるかどうかを考察する。
その結果、Neuro-Symbolic条件付けは標準リコール基準で最大2.59%、データセット拡張時にNo Graph Constraint Recall基準で+2.83%の大幅な改善をもたらすことが示された。
これらの結果から、ニューロ・シンボリック・ジェネレーティブ・アプローチの融合は、実際のデータと組み合わせることでモデル性能を向上させる補完構造情報と合成データを生成し、複雑な視覚的推論タスクにおいても、データ不足の限界を克服するための新しいアプローチを提供することが明らかとなった。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Neural Network Modeling of Microstructure Complexity Using Digital Libraries [1.03590082373586]
本研究では, 人工・スパイクニューラルネットワークの性能評価を行い, 疲労き裂進展とチューリングパターンの発達を予測した。
我々の評価では、漏れた統合・火災ニューロンモデルの方が、少ないパラメータと少ないメモリ使用量で予測精度が優れていることが示唆されている。
論文 参考訳(メタデータ) (2025-01-30T07:44:21Z) - SynFER: Towards Boosting Facial Expression Recognition with Synthetic Data [44.304022773272415]
ハイレベルなテキスト記述に基づく表情画像データの合成のための新しいフレームワークであるSynFERを紹介する。
本稿では,表情ラベルの修正を支援するために,生成プロセスと擬似ラベル生成手法を提案する。
提案手法は,AffectNetトレーニングセットサイズに相当する合成データのみを用いてトレーニングを行う場合,AffectNetの67.23%の分類精度を実現する。
論文 参考訳(メタデータ) (2024-10-13T14:58:21Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
本稿では,下流分類器の学習のための合成データの生成と利用を最適化するパイプラインである知識リサイクル(KR)を紹介する。
このパイプラインの核心は生成的知識蒸留(GKD)であり、情報の品質と有用性を大幅に向上させる技術が提案されている。
その結果、実データと合成データでトレーニングされたモデルと、実データでトレーニングされたモデルとの性能差が著しく低下した。
論文 参考訳(メタデータ) (2024-07-22T10:31:07Z) - Advancing fNIRS Neuroimaging through Synthetic Data Generation and Machine Learning Applications [0.0]
本研究では,機能的近赤外分光法(fNIRS)の神経イメージングへの統合的アプローチを提案する。
高品質なニューロイメージングデータセットの不足に対処することにより、モンテカルロシミュレーションとパラメトリックヘッドモデルを利用して総合的な合成データセットを生成する。
スケーラブルなデータ生成と処理のためにクラウドベースのインフラストラクチャが確立され、ニューロイメージングデータのアクセシビリティと品質が向上する。
論文 参考訳(メタデータ) (2024-05-18T09:50:19Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI(NeSy)は、AIシステムの安全なデプロイを保証することを約束している。
ニューラルネットワークとシンボリックコンポーネントを順次トレーニングする既存のパイプラインは、広範なラベリングを必要とする。
新しいアーキテクチャであるNeSyGPTは、生データから象徴的特徴を抽出する視覚言語基盤モデルを微調整する。
論文 参考訳(メタデータ) (2024-02-02T20:33:14Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
本稿では,NLPにおける合成データ生成のニュアンスについて考察する。
データ拡張の可能性や構造化品種の導入など、その利点を強調します。
テンプレートベースの合成データが現代の変圧器モデルの性能に与える影響を実証する。
論文 参考訳(メタデータ) (2023-10-11T19:16:09Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。