論文の概要: Cross-Modal Interactive Perception Network with Mamba for Lung Tumor Segmentation in PET-CT Images
- arxiv url: http://arxiv.org/abs/2503.17261v1
- Date: Fri, 21 Mar 2025 16:04:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:55:37.402282
- Title: Cross-Modal Interactive Perception Network with Mamba for Lung Tumor Segmentation in PET-CT Images
- Title(参考訳): PET-CT画像における肺腫瘍切除のためのマンバを用いたクロスモーダルインタラクティブ知覚ネットワーク
- Authors: Jie Mei, Chenyu Lin, Yu Qiu, Yaonan Wang, Hui Zhang, Ziyang Wang, Dong Dai,
- Abstract要約: 深層学習モデルでは、画像品質の低下、運動アーティファクト、複雑な腫瘍形態などの問題に対処することが期待されている。
我々は,605例のPET-CT画像21,930対からなる,PCLT20Kと呼ばれる大規模PET-CT肺腫瘍セグメンテーションデータセットを紹介した。
PET-CT画像における肺腫瘍のセグメンテーションのためのMamba(CIPA)を用いたクロスモーダル対話型知覚ネットワークを提案する。
- 参考スコア(独自算出の注目度): 29.523577037519985
- License:
- Abstract: Lung cancer is a leading cause of cancer-related deaths globally. PET-CT is crucial for imaging lung tumors, providing essential metabolic and anatomical information, while it faces challenges such as poor image quality, motion artifacts, and complex tumor morphology. Deep learning-based models are expected to address these problems, however, existing small-scale and private datasets limit significant performance improvements for these methods. Hence, we introduce a large-scale PET-CT lung tumor segmentation dataset, termed PCLT20K, which comprises 21,930 pairs of PET-CT images from 605 patients. Furthermore, we propose a cross-modal interactive perception network with Mamba (CIPA) for lung tumor segmentation in PET-CT images. Specifically, we design a channel-wise rectification module (CRM) that implements a channel state space block across multi-modal features to learn correlated representations and helps filter out modality-specific noise. A dynamic cross-modality interaction module (DCIM) is designed to effectively integrate position and context information, which employs PET images to learn regional position information and serves as a bridge to assist in modeling the relationships between local features of CT images. Extensive experiments on a comprehensive benchmark demonstrate the effectiveness of our CIPA compared to the current state-of-the-art segmentation methods. We hope our research can provide more exploration opportunities for medical image segmentation. The dataset and code are available at https://github.com/mj129/CIPA.
- Abstract(参考訳): 肺がんは世界中でがん関連死亡の原因となっている。
PET-CTは肺腫瘍のイメージングに不可欠であり、代謝や解剖学的な情報を提供する一方で、画像品質の低下、運動性アーティファクト、複雑な腫瘍形態といった課題に直面している。
ディープラーニングベースのモデルでは,これらの問題に対処することが期待されるが,既存の小規模およびプライベートデータセットでは,これらの手法の大幅なパフォーマンス向上が制限されている。
そこで本研究では,605例のPET-CT画像21,930対からなるPCLT20Kという大規模PET-CT肺腫瘍セグメンテーションデータセットを提案する。
さらに,PET-CT画像における肺腫瘍のセグメンテーションのための,Mamba(CIPA)を用いたクロスモーダル対話型知覚ネットワークを提案する。
具体的には,マルチモーダルな特徴にまたがるチャネル状態空間ブロックを実装し,相関表現を学習し,モダリティ固有のノイズを除去するチャネルワイド補正モジュール(CRM)を設計する。
動的相互モダリティ相互作用モジュール (DCIM) は位置情報とコンテキスト情報を効果的に統合するために設計されており、PET画像を用いて地域位置情報を学習し、CT画像の局所的特徴間の関係をモデル化するためのブリッジとして機能する。
総合的なベンチマークによる大規模な実験は、現在の最先端セグメンテーション手法と比較して、CIPAの有効性を実証している。
われわれの研究が医療画像セグメンテーションのさらなる探索の機会を得られることを願っている。
データセットとコードはhttps://github.com/mj129/CIPAで公開されている。
関連論文リスト
- Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - SwinCross: Cross-modal Swin Transformer for Head-and-Neck Tumor
Segmentation in PET/CT Images [6.936329289469511]
クロスモーダルアテンション(CMA)モジュールを備えたクロスモーダルスウィントランス (SwinCross) は、複数の解像度でクロスモーダル特徴抽出を組み込んだ。
提案手法は, 最先端の変圧器を用いた手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-08T03:36:57Z) - ISA-Net: Improved spatial attention network for PET-CT tumor
segmentation [22.48294544919023]
多モードポジトロン放射トモグラフィー(PET-CT)に基づく深層学習セグメンテーション法を提案する。
腫瘍検出におけるPETやCTの精度を高めるために,改良された空間注意ネットワーク(ISA-Net)を設計した。
今回提案したISA-Net法を,軟部組織肉腫 (STS) と頭頸部腫瘍 (HECKTOR) の2つの臨床データセットで検証した。
論文 参考訳(メタデータ) (2022-11-04T04:15:13Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Segmentation of Lung Tumor from CT Images using Deep Supervision [0.8733639720576208]
肺がんは世界中のほとんどの国で死因となっている。
本稿では,LOTUSデータセットに2次元離散ウェーブレット変換(DWT)を適用し,肺腫瘍のセグメンテーションにアプローチする。
論文 参考訳(メタデータ) (2021-11-17T17:50:18Z) - Predicting Distant Metastases in Soft-Tissue Sarcomas from PET-CT scans
using Constrained Hierarchical Multi-Modality Feature Learning [14.60163613315816]
Distant metastases (DM) は軟部肉腫 (STS) 患者における主要な死因である
STS患者が転移を発症する画像研究から判断することは困難である。
PET-CTデータから患者のDMを予測する3D CNNについて概説する。
論文 参考訳(メタデータ) (2021-04-23T05:12:02Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - Multimodal Spatial Attention Module for Targeting Multimodal PET-CT Lung
Tumor Segmentation [11.622615048002567]
マルチモーダル空間アテンションモジュール(MSAM)は腫瘍に関連する領域を強調することを学ぶ。
MSAMは一般的なバックボーンアーキテクチャやトレーニングされたエンドツーエンドに適用できる。
論文 参考訳(メタデータ) (2020-07-29T10:27:22Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。