Efficient Intent-Based Filtering for Multi-Party Conversations Using Knowledge Distillation from LLMs
- URL: http://arxiv.org/abs/2503.17336v1
- Date: Fri, 21 Mar 2025 17:34:37 GMT
- Title: Efficient Intent-Based Filtering for Multi-Party Conversations Using Knowledge Distillation from LLMs
- Authors: Reem Gody, Mohamed Abdelghaffar, Mohammed Jabreel, Ahmed Tawfik,
- Abstract summary: Large language models (LLMs) have showcased remarkable capabilities in conversational AI.<n>These models are resource-intensive, demanding substantial memory and computational power.<n>We propose a cost-effective solution that filters conversational snippets of interest for LLM processing, tailored to the target downstream application.
- Score: 0.3249879651054463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have showcased remarkable capabilities in conversational AI, enabling open-domain responses in chat-bots, as well as advanced processing of conversations like summarization, intent classification, and insights generation. However, these models are resource-intensive, demanding substantial memory and computational power. To address this, we propose a cost-effective solution that filters conversational snippets of interest for LLM processing, tailored to the target downstream application, rather than processing every snippet. In this work, we introduce an innovative approach that leverages knowledge distillation from LLMs to develop an intent-based filter for multi-party conversations, optimized for compute power constrained environments. Our method combines different strategies to create a diverse multi-party conversational dataset, that is annotated with the target intents and is then used to fine-tune the MobileBERT model for multi-label intent classification. This model achieves a balance between efficiency and performance, effectively filtering conversation snippets based on their intents. By passing only the relevant snippets to the LLM for further processing, our approach significantly reduces overall operational costs depending on the intents and the data distribution as demonstrated in our experiments.
Related papers
- From Reviews to Dialogues: Active Synthesis for Zero-Shot LLM-based Conversational Recommender System [49.57258257916805]
Large Language Models (LLMs) demonstrate strong zero-shot recommendation capabilities.
Practical applications often favor smaller, internally managed recommender models due to scalability, interpretability, and data privacy constraints.
We propose an active data augmentation framework that synthesizes conversational training data by leveraging black-box LLMs guided by active learning techniques.
arXiv Detail & Related papers (2025-04-21T23:05:47Z) - Intent-Aware Dialogue Generation and Multi-Task Contrastive Learning for Multi-Turn Intent Classification [6.459396785817196]
Chain-of-Intent generates intent-driven conversations through self-play.
MINT-CL is a framework for multi-turn intent classification using multi-task contrastive learning.
We release MINT-E, a multilingual, intent-aware multi-turn e-commerce dialogue corpus.
arXiv Detail & Related papers (2024-11-21T15:59:29Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Fine-tuning Multimodal Large Language Models for Product Bundling [53.01642741096356]
We introduce Bundle-MLLM, a novel framework that fine-tunes large language models (LLMs) through a hybrid item tokenization approach.<n>Specifically, we integrate textual, media, and relational data into a unified tokenization, introducing a soft separation token to distinguish between textual and non-textual tokens.<n>We propose a progressive optimization strategy that fine-tunes LLMs for disentangled objectives: 1) learning bundle patterns and 2) enhancing multimodal semantic understanding specific to product bundling.
arXiv Detail & Related papers (2024-07-16T13:30:14Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
Large Language Models (LLMs) have demonstrated significant promise as agents in interactive tasks.
We propose a method for transferring the performance of an LLM with billions of parameters to a much smaller language model.
In ScienceWorld, a challenging and multi-task interactive text environment, our method surpasses standard imitation learning based solely on elementary actions by 16.7%.
arXiv Detail & Related papers (2024-05-04T20:34:06Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks.
However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome.
In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue.
arXiv Detail & Related papers (2023-11-09T18:45:16Z) - Language Models as Black-Box Optimizers for Vision-Language Models [62.80817942316398]
Vision-language models (VLMs) pre-trained on web-scale datasets have demonstrated remarkable capabilities on downstream tasks when fine-tuned with minimal data.
We aim to develop a black-box approach to optimize VLMs through natural language prompts.
arXiv Detail & Related papers (2023-09-12T04:03:41Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Dialog Intent Induction via Density-based Deep Clustering Ensemble [12.05997006407326]
In real-life applications, it is crucial to occasionally induce novel dialog intents from the conversation logs to improve the user experience.
We propose the Density-based Deep Clustering Ensemble (DDCE) method for dialog intent induction.
Our proposed method is more effective in dealing with real-life scenarios where a large number of outliers exist.
arXiv Detail & Related papers (2022-01-18T04:13:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.