FairFlow: Mitigating Dataset Biases through Undecided Learning
- URL: http://arxiv.org/abs/2503.17632v1
- Date: Sat, 22 Mar 2025 03:35:51 GMT
- Title: FairFlow: Mitigating Dataset Biases through Undecided Learning
- Authors: Jiali Cheng, Hadi Amiri,
- Abstract summary: Language models are prone to dataset biases, known as shortcuts and spurious correlations in data.<n>We present a new debiasing framework called FairFlow'' that mitigates dataset biases by learning to be undecided in its predictions.
- Score: 14.755831733659699
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Language models are prone to dataset biases, known as shortcuts and spurious correlations in data, which often result in performance drop on new data. We present a new debiasing framework called ``FairFlow'' that mitigates dataset biases by learning to be undecided in its predictions for data samples or representations associated with known or unknown biases. The framework introduces two key components: a suite of data and model perturbation operations that generate different biased views of input samples, and a contrastive objective that learns debiased and robust representations from the resulting biased views of samples. Experiments show that FairFlow outperforms existing debiasing methods, particularly against out-of-domain and hard test samples without compromising the in-domain performance
Related papers
- Model Debiasing by Learnable Data Augmentation [19.625915578646758]
This paper proposes a novel 2-stage learning pipeline featuring a data augmentation strategy able to regularize the training.
Experiments on synthetic and realistic biased datasets show state-of-the-art classification accuracy, outperforming competing methods.
arXiv Detail & Related papers (2024-08-09T09:19:59Z) - DiffInject: Revisiting Debias via Synthetic Data Generation using Diffusion-based Style Injection [9.801159950963306]
We propose DiffInject, a powerful method to augment synthetic bias-conflict samples using a pretrained diffusion model.
Our framework does not require any explicit knowledge of the bias types or labelling, making it a fully unsupervised setting for debiasing.
arXiv Detail & Related papers (2024-06-10T09:45:38Z) - Revisiting the Dataset Bias Problem from a Statistical Perspective [72.94990819287551]
We study the "dataset bias" problem from a statistical standpoint.
We identify the main cause of the problem as the strong correlation between a class attribute u and a non-class attribute b.
We propose to mitigate dataset bias via either weighting the objective of each sample n by frac1p(u_n|b_n) or sampling that sample with a weight proportional to frac1p(u_n|b_n).
arXiv Detail & Related papers (2024-02-05T22:58:06Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
We propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model.
Our proposed strategy improves the bias identification ability of the auxiliary model.
arXiv Detail & Related papers (2023-12-06T16:15:00Z) - IBADR: an Iterative Bias-Aware Dataset Refinement Framework for
Debiasing NLU models [52.03761198830643]
We propose IBADR, an Iterative Bias-Aware dataset Refinement framework.
We first train a shallow model to quantify the bias degree of samples in the pool.
Then, we pair each sample with a bias indicator representing its bias degree, and use these extended samples to train a sample generator.
In this way, this generator can effectively learn the correspondence relationship between bias indicators and samples.
arXiv Detail & Related papers (2023-11-01T04:50:38Z) - From Fake to Real: Pretraining on Balanced Synthetic Images to Prevent Spurious Correlations in Image Recognition [64.59093444558549]
We propose a simple, easy-to-implement, two-step training pipeline that we call From Fake to Real.
By training on real and synthetic data separately, FFR does not expose the model to the statistical differences between real and synthetic data.
Our experiments show that FFR improves worst group accuracy over the state-of-the-art by up to 20% over three datasets.
arXiv Detail & Related papers (2023-08-08T19:52:28Z) - Echoes: Unsupervised Debiasing via Pseudo-bias Labeling in an Echo
Chamber [17.034228910493056]
This paper presents experimental analyses revealing that the existing biased models overfit to bias-conflicting samples in the training data.
We propose a straightforward and effective method called Echoes, which trains a biased model and a target model with a different strategy.
Our approach achieves superior debiasing results compared to the existing baselines on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-06T13:13:18Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
Existing natural language understanding (NLU) models often rely on dataset biases to achieve high performance on specific datasets.
We propose debiasing contrastive learning (DCT) to mitigate biased latent features and neglect the dynamic nature of bias.
DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance.
arXiv Detail & Related papers (2022-12-11T06:16:14Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data
via Generative Bias-transformation [31.944147533327058]
Contrastive Debiasing via Generative Bias-transformation (CDvG)
We propose a novel method, Contrastive Debiasing via Generative Bias-transformation (CDvG), which works without explicit bias labels or bias-free samples.
Our method demonstrates superior performance compared to prior approaches, especially when bias-free samples are scarce or absent.
arXiv Detail & Related papers (2021-12-02T07:16:06Z) - Learning Debiased Representation via Disentangled Feature Augmentation [19.348340314001756]
This paper presents an empirical analysis revealing that training with "diverse" bias-conflicting samples is crucial for debiasing.
We propose a novel feature-level data augmentation technique in order to synthesize diverse bias-conflicting samples.
arXiv Detail & Related papers (2021-07-03T08:03:25Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
This paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases.
First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method.
The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features.
arXiv Detail & Related papers (2020-05-10T17:56:10Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
We introduce a novel debiasing method called confidence regularization.
It discourages models from exploiting biases while enabling them to receive enough incentive to learn from all the training examples.
We evaluate our method on three NLU tasks and show that, in contrast to its predecessors, it improves the performance on out-of-distribution datasets.
arXiv Detail & Related papers (2020-05-01T11:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.