論文の概要: Can LLMs Automate Fact-Checking Article Writing?
- arxiv url: http://arxiv.org/abs/2503.17684v1
- Date: Sat, 22 Mar 2025 07:56:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:39:21.472965
- Title: Can LLMs Automate Fact-Checking Article Writing?
- Title(参考訳): LLMはFact-Checking条文を自動作成できるか?
- Authors: Dhruv Sahnan, David Corney, Irene Larraz, Giovanni Zagni, Ruben Miguez, Zhuohan Xie, Iryna Gurevych, Elizabeth Churchill, Tanmoy Chakraborty, Preslav Nakov,
- Abstract要約: 我々は、一般的なファクトチェックパイプラインを拡張し、フルファクトチェック記事の自動生成の必要性を論じる。
我々は,人間のファクトチェッカーの筆記ワークフローを模倣した LLM ベースのエージェントフレームワーク QRAFT を開発した。
- 参考スコア(独自算出の注目度): 69.90165567819656
- License:
- Abstract: Automatic fact-checking aims to support professional fact-checkers by offering tools that can help speed up manual fact-checking. Yet, existing frameworks fail to address the key step of producing output suitable for broader dissemination to the general public: while human fact-checkers communicate their findings through fact-checking articles, automated systems typically produce little or no justification for their assessments. Here, we aim to bridge this gap. We argue for the need to extend the typical automatic fact-checking pipeline with automatic generation of full fact-checking articles. We first identify key desiderata for such articles through a series of interviews with experts from leading fact-checking organizations. We then develop QRAFT, an LLM-based agentic framework that mimics the writing workflow of human fact-checkers. Finally, we assess the practical usefulness of QRAFT through human evaluations with professional fact-checkers. Our evaluation shows that while QRAFT outperforms several previously proposed text-generation approaches, it lags considerably behind expert-written articles. We hope that our work will enable further research in this new and important direction.
- Abstract(参考訳): 自動ファクトチェックは、手動のファクトチェックを高速化するツールを提供することで、プロのファクトチェックを支援することを目的としている。
しかし、既存のフレームワークは、一般に広く普及するのに適したアウトプットを生成するための重要なステップに対処することができない。
ここでは、このギャップを埋めることを目指しています。
我々は、一般的なファクトチェックパイプラインを拡張し、フルファクトチェック記事の自動生成の必要性を論じる。
我々はまず,先進的なファクトチェック組織の専門家との一連のインタビューを通じて,そのような記事の重要なデシラタを識別する。
次に、人間のファクトチェッカーの書込みワークフローを模倣するLLMベースのエージェントフレームワークであるQRAFTを開発する。
最後に,プロのファクトチェッカーを用いた人間による評価を通じて,QRAFTの実用性を評価する。
評価の結果、QRAFTは以前提案したテキスト生成手法よりも優れているが、専門家による記事よりもかなり遅れていることがわかった。
この新たな重要な方向性について、さらなる研究を可能にすることを願っています。
関連論文リスト
- Show Me the Work: Fact-Checkers' Requirements for Explainable Automated Fact-Checking [43.300457630671154]
オンラインメディアにおける大規模言語モデルと生成AIは、効果的な自動事実チェックの必要性を増幅している。
これらの説明が、ファクトチェッカーの意思決定と推論プロセスとどのように一致すべきかは不明だ。
論文 参考訳(メタデータ) (2025-02-13T08:56:25Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - The Right Prompts for the Job: Repair Code-Review Defects with Large
Language Model [15.885824575879763]
自動プログラム修復(APR)技術は、コードレビュー(CR)プロセス中にプログラム欠陥を発見して修復する手作業を減らす可能性がある。
しかし、既存のAPRアプローチにまつわる限られた精度とかなりの時間的コストは、産業的な実践において採用を妨げている。
近年のLLM(Large Language Models)の進歩により、自然言語やプログラミング言語を理解する能力が向上し、レビューコメントに基づいたパッチの生成が可能になった。
論文 参考訳(メタデータ) (2023-12-29T06:12:15Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Factcheck-Bench: Fine-Grained Evaluation Benchmark for Automatic Fact-checkers [121.53749383203792]
本稿では,大規模言語モデル (LLM) 生成応答の事実性に注釈を付けるための総合的なエンドツーエンドソリューションを提案する。
オープンドメインの文書レベルの事実性ベンチマークを,クレーム,文,文書の3段階の粒度で構築する。
予備実験によると、FacTool、FactScore、Perplexityは虚偽の主張を識別するのに苦労している。
論文 参考訳(メタデータ) (2023-11-15T14:41:57Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checkerはファクトチェックを容易にするプラグインとプレイモジュールからなるフレームワークである。
このフレームワークは、低リソース環境でファクトチェックシステムを構築するための、高速で効率的な方法を提供する。
論文 参考訳(メタデータ) (2023-05-24T01:46:07Z) - ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning [63.77667876176978]
大規模言語モデルでは、最終回答を正当化するためにステップバイステップの推論を生成するように促された場合、ダウンストリームタスクの解釈可能性が改善されている。
これらの推論ステップは、モデルの解釈可能性と検証を大幅に改善するが、客観的にそれらの正確性を研究することは困難である。
本稿では、従来のテキスト生成評価指標を改善し拡張する、解釈可能な教師なし自動スコアのスイートであるROSを提案する。
論文 参考訳(メタデータ) (2022-12-15T15:52:39Z) - Assisting the Human Fact-Checkers: Detecting All Previously Fact-Checked
Claims in a Document [27.076320857009655]
入力文書が与えられた場合、以前に事実確認されたクレームによって検証可能なクレームを含むすべての文を検出することを目的としている。
出力は文書文の再ランクリストであり、検証可能なものは可能な限り高くランク付けされる。
本分析は,テキストの類似性やスタンスをモデル化することの重要性を実証すると同時に,検索した事実チェックされたクレームの正確性も考慮する。
論文 参考訳(メタデータ) (2021-09-14T13:46:52Z) - Generating Fact Checking Explanations [52.879658637466605]
まだ欠けているパズルの重要なピースは、プロセスの最も精巧な部分を自動化する方法を理解することです。
本稿では、これらの説明を利用可能なクレームコンテキストに基づいて自動生成する方法について、最初の研究を行う。
この結果から,個別に学習するのではなく,両目標を同時に最適化することで,事実確認システムの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T05:23:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。