Relation Extraction with Instance-Adapted Predicate Descriptions
- URL: http://arxiv.org/abs/2503.17799v2
- Date: Fri, 25 Jul 2025 09:47:57 GMT
- Title: Relation Extraction with Instance-Adapted Predicate Descriptions
- Authors: Yuhang Jiang, Ramakanth Kavuluru,
- Abstract summary: Relation extraction plays a major role in downstream applications such as knowledge discovery and question answering.<n>In this paper, we revisit fine-tuning such smaller models using a novel dual-encoder architecture with a joint contrastive and cross-entropy loss.<n>Our approach achieved F1 score improvements ranging from 1% to 2% over state-of-the-art methods with a simple but elegant formulation.
- Score: 9.021267901894912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relation extraction (RE) is a standard information extraction task playing a major role in downstream applications such as knowledge discovery and question answering. Although decoder-only large language models are excelling in generative tasks, smaller encoder models are still the go to architecture for RE. In this paper, we revisit fine-tuning such smaller models using a novel dual-encoder architecture with a joint contrastive and cross-entropy loss. Unlike previous methods that employ a fixed linear layer for predicate representations, our approach uses a second encoder to compute instance-specific predicate representations by infusing them with real entity spans from corresponding input instances. We conducted experiments on two biomedical RE datasets and two general domain datasets. Our approach achieved F1 score improvements ranging from 1% to 2% over state-of-the-art methods with a simple but elegant formulation. Ablation studies justify the importance of various components built into the proposed architecture.
Related papers
- Kolmogorov-Arnold Network for Remote Sensing Image Semantic Segmentation [8.891804836416275]
We propose a novel semantic segmentation network, namely DeepKANSeg.<n>First, we introduce a KAN-based deep feature refinement module, namely DeepKAN.<n>Second, we replace the traditional multi-layer perceptron (MLP) layers in the global-local combined decoder with KAN-based linear layers, namely GLKAN.
arXiv Detail & Related papers (2025-01-13T15:06:51Z) - Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting [107.4034346788744]
Existing vehicle trajectory prediction models struggle with generalizability, prediction uncertainties, and handling complex interactions.<n>We propose Perceiver with Register queries (PerReg+), a novel trajectory prediction framework that introduces: (1) Dual-Level Representation Learning via Self-Distillation (SD) and Masked Reconstruction (MR), capturing global context and fine-grained details; (2) Enhanced Multimodality using register-based queries and pretraining, eliminating the need for clustering and suppression; and (3) Adaptive Prompt Tuning during fine-tuning, freezing the main architecture and optimizing a small number of prompts for efficient adaptation.
arXiv Detail & Related papers (2025-01-08T20:11:09Z) - AEMLO: AutoEncoder-Guided Multi-Label Oversampling [6.255095509216069]
AEMLO is an AutoEncoder-guided Oversampling technique for imbalanced multi-label data.
We show that AEMLO outperforms the existing state-of-the-art methods with extensive empirical studies.
arXiv Detail & Related papers (2024-08-23T14:01:33Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
We study how the topology of feature embedding space changes as it passes through the layers of a well-trained deep neural network (DNN) through Betti numbers.
We demonstrate that as depth increases, a topologically complicated dataset is transformed into a simple one, resulting in Betti numbers attaining their lowest possible value.
arXiv Detail & Related papers (2023-11-08T10:45:12Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - Impact of PolSAR pre-processing and balancing methods on complex-valued
neural networks segmentation tasks [9.6556424340252]
We investigate the semantic segmentation of Polarimetric Synthetic Aperture Radar (PolSAR) using Complex-Valued Neural Network (CVNN)
We exhaustively compare both methods for six model architectures, three complex-valued, and their respective real-equivalent models.
We propose two methods for reducing this gap and performing the results for all input representations, models, and dataset pre-processing.
arXiv Detail & Related papers (2022-10-28T12:49:43Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.