DVG-Diffusion: Dual-View Guided Diffusion Model for CT Reconstruction from X-Rays
- URL: http://arxiv.org/abs/2503.17804v1
- Date: Sat, 22 Mar 2025 16:03:18 GMT
- Title: DVG-Diffusion: Dual-View Guided Diffusion Model for CT Reconstruction from X-Rays
- Authors: Xing Xie, Jiawei Liu, Huijie Fan, Zhi Han, Yandong Tang, Liangqiong Qu,
- Abstract summary: We facilitate complex 2D X-ray image to 3D CT mapping by incorporating new view synthesis, and reduce the learning difficulty through view-guided feature alignment.<n>Specifically, we propose a dual-view guided diffusion model (DVG-Diffusion), which couples a real input X-ray view and a synthesized new X-ray view to jointly guide CT reconstruction.
- Score: 32.55527512602604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Directly reconstructing 3D CT volume from few-view 2D X-rays using an end-to-end deep learning network is a challenging task, as X-ray images are merely projection views of the 3D CT volume. In this work, we facilitate complex 2D X-ray image to 3D CT mapping by incorporating new view synthesis, and reduce the learning difficulty through view-guided feature alignment. Specifically, we propose a dual-view guided diffusion model (DVG-Diffusion), which couples a real input X-ray view and a synthesized new X-ray view to jointly guide CT reconstruction. First, a novel view parameter-guided encoder captures features from X-rays that are spatially aligned with CT. Next, we concatenate the extracted dual-view features as conditions for the latent diffusion model to learn and refine the CT latent representation. Finally, the CT latent representation is decoded into a CT volume in pixel space. By incorporating view parameter guided encoding and dual-view guided CT reconstruction, our DVG-Diffusion can achieve an effective balance between high fidelity and perceptual quality for CT reconstruction. Experimental results demonstrate our method outperforms state-of-the-art methods. Based on experiments, the comprehensive analysis and discussions for views and reconstruction are also presented.
Related papers
- Coarse-Fine View Attention Alignment-Based GAN for CT Reconstruction from Biplanar X-Rays [22.136553745483305]
We propose a novel attention-informed coarse-to-fine cross-view fusion method to combine the features extracted from the biplanar views.
Experiments have demonstrated the superiority of our proposed method over the SOTA methods.
arXiv Detail & Related papers (2024-08-19T06:57:07Z) - Reconstruct Spine CT from Biplanar X-Rays via Diffusion Learning [26.866131691476255]
Intraoperative CT imaging serves as a crucial resource for surgical guidance; however, it may not always be readily accessible or practical to implement.
In this paper, we introduce an innovative method for 3D CT reconstruction utilizing biplanar X-rays.
arXiv Detail & Related papers (2024-08-19T06:34:01Z) - DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays [41.393567374399524]
We propose DiffuX2CT, which models CT reconstruction from ultra-sparse X-rays as a conditional diffusion process.
By doing so, DiffuX2CT achieves structure-controllable reconstruction, which enables 3D structural information to be recovered from 2D X-rays.
As an extra contribution, we collect a real-world lumbar CT dataset, called LumbarV, as a new benchmark to verify the clinical significance and performance of CT reconstruction from X-rays.
arXiv Detail & Related papers (2024-07-18T14:20:04Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - Multi-view X-ray Image Synthesis with Multiple Domain Disentanglement from CT Scans [10.72672892416061]
Over-dosed X-rays superimpose potential risks to human health to some extent.
Data-driven algorithms from volume scans to X-ray images are restricted by the scarcity of paired X-ray and volume data.
We propose CT2X-GAN to synthesize the X-ray images in an end-to-end manner using the content and style disentanglement from three different image domains.
arXiv Detail & Related papers (2024-04-18T04:25:56Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Perspective Projection-Based 3D CT Reconstruction from Biplanar X-rays [32.98966469644061]
We propose PerX2CT, a novel CT reconstruction framework from X-ray.
Our proposed method provides a different combination of features for each coordinate which implicitly allows the model to obtain information about the 3D location.
arXiv Detail & Related papers (2023-03-09T14:45:25Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGAS proposes a self-supervised method to synthesize the undersampled tomographic views and mitigate aliasing artifacts in reconstructed images.
To address the large memory cost of deep neural networks on high resolution 4D data, REGAS introduces a novel Ray Path Transformation (RPT) that allows for distributed, differentiable forward projections.
arXiv Detail & Related papers (2022-08-17T03:42:19Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
A radiograph visualizes the internal anatomy of a patient through the use of X-ray, which projects 3D information onto a 2D plane.
To the best of our knowledge, this is the first work on radiograph view synthesis.
We show that by gaining an understanding of radiography in 3D space, our method can be applied to radiograph bone extraction and suppression without groundtruth bone labels.
arXiv Detail & Related papers (2020-12-04T05:08:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.