論文の概要: Connectedness: a dimension of security bug severity assessment for measuring uncertainty
- arxiv url: http://arxiv.org/abs/2503.17813v1
- Date: Sat, 22 Mar 2025 16:25:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:33:14.346581
- Title: Connectedness: a dimension of security bug severity assessment for measuring uncertainty
- Title(参考訳): 接続性:不確実性測定のためのセキュリティバグ重大度評価の次元
- Authors: Shue Long Chan,
- Abstract要約: CVSS(Common Vulnerability Scoring System)のようなセキュリティバグの深刻度を評価するための現在のフレームワークは、影響に対するエクスプロイラビリティの比率を優先している。
本稿では, 上記の手法が「既知の未知」を計測するが, 「未知」を不十分に扱うことを示唆する。
本稿では,セキュリティバグがさまざまなエンティティといかに強く結びついているかを測定する,接続性の概念を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Current frameworks for evaluating security bug severity, such as the Common Vulnerability Scoring System (CVSS), prioritize the ratio of exploitability to impact. This paper suggests that the above approach measures the "known knowns" but inadequately addresses the "known unknowns" especially when there exist multiple possible exploit paths and side effects, which introduce significant uncertainty. This paper introduces the concept of connectedness, which measures how strongly a security bug is connected with different entities, thereby reflecting the uncertainty of impact and the exploit potential. This work highlights the critical but underappreciated role connectedness plays in severity assessments.
- Abstract(参考訳): CVSS(Common Vulnerability Scoring System)のようなセキュリティバグの深刻度を評価するための現在のフレームワークは、影響に対するエクスプロイラビリティの比率を優先している。
上記の手法は「既知の未知」を計測するが、「既知の未知」を不適切に扱うことは、特に、複数の攻撃経路や副作用が存在する場合において、重大な不確実性をもたらすことを示唆する。
本稿では,セキュリティバグがさまざまなエンティティといかに強く結びついているかを測定するコネクティビティの概念を紹介し,影響の不確実性やエクスプロイトの可能性について考察する。
この研究は、重度評価において、批判的だが不適切な役割の結びつきが果たす役割を強調している。
関連論文リスト
- Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching [61.73532883992135]
本稿では,新しい不確実性を考慮したステレオマッチングフレームワークを提案する。
我々はベイズリスクを不確実性の測定として採用し、データを別々に見積もり、不確実性をモデル化する。
論文 参考訳(メタデータ) (2024-12-24T23:28:20Z) - On the Robustness of Adversarial Training Against Uncertainty Attacks [9.180552487186485]
学習問題において、手元のタスクに固有のノイズは、ある程度の不確実性なく推論する可能性を妨げている。
本研究は、敵の例、すなわち、誤分類を引き起こす注意深く摂動されたサンプルに対する防御が、より安全で信頼性の高い不確実性推定を保証していることを実証的および理論的に明らかにする。
我々は,CIFAR-10およびImageNetデータセット上で,公開ベンチマークのRobustBenchから,複数の逆ロバストモデルを評価する。
論文 参考訳(メタデータ) (2024-10-29T11:12:44Z) - Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
我々は,定量化基盤真理とユーザにとっての明確な意義の両面から,批判的枠組みを定めようとしている。
エージェントがn連続的ランダム動作に対するポリシーから逸脱した場合の報酬の減少として真臨界を導入する。
我々はまた、真の臨界と統計的に単調な関係を持つ低オーバーヘッド計量であるプロキシ臨界の概念も導入する。
論文 参考訳(メタデータ) (2024-09-26T21:00:45Z) - A Human-Centered Risk Evaluation of Biometric Systems Using Conjoint Analysis [0.6199770411242359]
本稿では, コンジョイント分析を用いて, 監視カメラなどのリスク要因が攻撃者のモチベーションに与える影響を定量化するために, 新たな人間中心型リスク評価フレームワークを提案する。
本フレームワークは、False Acceptance Rate(FAR)とアタック確率を組み込んだリスク値を算出し、ユースケース間の総合的な比較を可能にする。
論文 参考訳(メタデータ) (2024-09-17T14:18:21Z) - Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects [0.11999555634662631]
本研究では,オープンソースソフトウェア(OSS)プロジェクトの依存関係の脆弱性について検討する。
古い依存関係やメンテナンスされていない依存関係に共通する問題を特定しました。
その結果, 直接的な依存関係の削減と, 強力なセキュリティ記録を持つ高度に確立されたライブラリの優先順位付けが, ソフトウェアセキュリティの状況を改善する効果的な戦略であることが示唆された。
論文 参考訳(メタデータ) (2024-08-26T13:46:48Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
多くの信頼度推定法は誤分類誤りを検出するのに有害である。
本稿では, 最先端の故障予測性能を示す平坦な最小値を求めることにより, 信頼性ギャップを拡大することを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:44:14Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - Certifiably Adversarially Robust Detection of Out-of-Distribution Data [111.67388500330273]
我々は,OOD点における信頼度を低くすることで,OOD検出の証明可能な最悪のケースを保証することを目的としている。
トレーニング時に見られるOODデータセットを超えて一般化されたOODデータの信頼性の非自明な境界が可能であることを示す。
論文 参考訳(メタデータ) (2020-07-16T17:16:47Z) - A Comparison of Uncertainty Estimation Approaches in Deep Learning
Components for Autonomous Vehicle Applications [0.0]
自律走行車(AV)の安全性を確保する主要な要因は、望ましくない、予測できない状況下での異常な行動を避けることである。
データやモデルにおける不確実性の定量化のための様々な手法が近年提案されている。
これらの手法では、高い計算負荷、高いメモリフットプリント、余分なレイテンシが要求され、安全クリティカルなアプリケーションでは禁止される。
論文 参考訳(メタデータ) (2020-06-26T18:55:10Z) - Uncertainty-Based Out-of-Distribution Classification in Deep
Reinforcement Learning [17.10036674236381]
アウト・オブ・ディストリビューションデータの誤予測は、機械学習システムにおける安全性の危機的状況を引き起こす可能性がある。
我々は不確実性に基づくOOD分類のためのフレームワークUBOODを提案する。
UBOODはアンサンブルに基づく推定器と組み合わせることで,信頼性の高い分類結果が得られることを示す。
論文 参考訳(メタデータ) (2019-12-31T09:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。