論文の概要: Auditing Fairness under Unobserved Confounding
- arxiv url: http://arxiv.org/abs/2403.14713v3
- Date: Mon, 09 Dec 2024 06:30:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:52:02.490027
- Title: Auditing Fairness under Unobserved Confounding
- Title(参考訳): 観測不能な条件下での公正さの監査
- Authors: Yewon Byun, Dylan Sam, Michael Oberst, Zachary C. Lipton, Bryan Wilder,
- Abstract要約: 意外なことに、リスクの高い人に対する治療率の有意義な限界を計算できることが示されています。
現実の多くの環境では、リスクの偏りのない見積を導き出すために、アロケーションの前にデータを持っているという事実を使用します。
- 参考スコア(独自算出の注目度): 56.61738581796362
- License:
- Abstract: Many definitions of fairness or inequity involve unobservable causal quantities that cannot be directly estimated without strong assumptions. For instance, it is particularly difficult to estimate notions of fairness that rely on hard-to-measure concepts such as risk (e.g., quantifying whether patients at the same risk level have equal probability of treatment, regardless of group membership). Such measurements of risk can be accurately obtained when no unobserved confounders have jointly influenced past decisions and outcomes. However, in the real world, this assumption rarely holds. In this paper, we show that, surprisingly, one can still compute meaningful bounds on treatment rates for high-risk individuals (i.e., conditional on their true, \textit{unobserved} negative outcome), even when entirely eliminating or relaxing the assumption that we observe all relevant risk factors used by decision makers. We use the fact that in many real-world settings (e.g., the release of a new treatment) we have data from prior to any allocation to derive unbiased estimates of risk. This result enables us to audit unfair outcomes of existing decision-making systems in a principled manner. We demonstrate the effectiveness of our framework with a real-world study of Paxlovid allocation, provably identifying that observed racial inequity cannot be explained by unobserved confounders of the same strength as important observed covariates.
- Abstract(参考訳): フェアネスや不等式の多くの定義は、強い仮定なしで直接推定できない観測不可能な因果量を含む。
例えば、リスク(例えば、同じリスクレベルの患者が、グループメンバーによらず、同じ治療の確率が等しいかどうかを定量化する)のような、難しい測定概念に依存する公平性の概念を推定することは特に困難である。
このようなリスクの測定は、観測されていない共同創設者が過去の決定や成果に共同で影響を与えていない場合に、正確に得ることができる。
しかし、現実の世界では、この仮定はめったに成立しない。
本稿では, 意思決定者が用いたすべてのリスク要因を完全に排除あるいは緩和した場合であっても, 高リスク者に対する治療率の有意な限界(すなわち, 事実を条件とした条件付き)を計算可能であることを示す。
私たちは、現実の多くの設定(例えば、新しい治療のリリース)において、偏見のないリスクの見積を導き出すために、アロケーションの前にデータを持っているという事実を使用します。
これにより,既存の意思決定システムの不公平な結果を原則的に評価することができる。
筆者らは,Paxlovidアロケーションの現実的な研究により,観察された人種的不平等が,重要な観察された共変量体と同じ強度の非観察的共同設立者によって説明できないことを実証した。
関連論文リスト
- FairlyUncertain: A Comprehensive Benchmark of Uncertainty in Algorithmic Fairness [4.14360329494344]
フェアネスにおける不確実性評価のための公理的ベンチマークであるFairlyUncertainを紹介する。
我々のベンチマークは、予測の不確実性推定は学習パイプライン間で一貫性があり、観測されたランダム性に調整されるべきである、と示唆している。
論文 参考訳(メタデータ) (2024-10-02T20:15:29Z) - Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
我々は,定量化基盤真理とユーザにとっての明確な意義の両面から,批判的枠組みを定めようとしている。
エージェントがn連続的ランダム動作に対するポリシーから逸脱した場合の報酬の減少として真臨界を導入する。
我々はまた、真の臨界と統計的に単調な関係を持つ低オーバーヘッド計量であるプロキシ臨界の概念も導入する。
論文 参考訳(メタデータ) (2024-09-26T21:00:45Z) - The Unfairness of $\varepsilon$-Fairness [0.0]
我々は、$varepsilon$-fairnessという概念が採用されれば、現実世界の文脈で最大に不公平な結果をもたらす可能性があることを示した。
本研究は,大学入学と信用リスク評価の2つの実例を用いて実施した。
論文 参考訳(メタデータ) (2024-05-15T14:13:35Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
しきい値とトレードオフパラメータが適応的に選択された場合、リスクの有効な制御を可能にする手法を開発する。
提案手法は単調なリスクとほぼ単調なリスクをサポートするが,それ以外は分布的な仮定はしない。
論文 参考訳(メタデータ) (2024-03-28T17:28:06Z) - What's the Harm? Sharp Bounds on the Fraction Negatively Affected by
Treatment [58.442274475425144]
我々は,これらの関数がどの程度の速さで学習されたかに関わらず,効率の良い頑健な推論アルゴリズムを開発した。
シミュレーション研究および失業者のキャリアカウンセリングのケーススタディにおいて,本手法を実証する。
論文 参考訳(メタデータ) (2022-05-20T17:36:33Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
平均的な治療効果は社会福祉の変化を測定するため、たとえ肯定的であっても、人口の約10%に悪影響を及ぼすリスクがある。
本稿では,ICT分布のリスク条件値(CVaR)として定式化されたこの重要なリスク尺度をどう評価するかを検討する。
いくつかの境界は、複素CATE関数を単一の計量に要約したものと解釈することもでき、有界であることとは無関係に興味を持つ。
論文 参考訳(メタデータ) (2022-01-15T17:21:26Z) - Enabling risk-aware Reinforcement Learning for medical interventions
through uncertainty decomposition [9.208828373290487]
複雑な制御と意思決定の問題に対処するためのツールとして強化学習(RL)が登場している。
エージェントが学習した明らかに最適なポリシーと、実際の展開の間のギャップを埋めることは、しばしば困難である。
本稿では,各不確実性のネット効果を分解して不確かさを再現するために,分布的アプローチ (UA-DQN) を再キャストする方法を提案する。
論文 参考訳(メタデータ) (2021-09-16T09:36:53Z) - Feedback Effects in Repeat-Use Criminal Risk Assessments [0.0]
リスクは、単発テストで捉えられていない方法で、シーケンシャルな決定を伝達できることを示します。
リスクアセスメントツールは、非常に複雑でパスに依存したプロセスで動作し、歴史的な不平等が引き起こされる。
論文 参考訳(メタデータ) (2020-11-28T06:40:05Z) - Temporal Difference Uncertainties as a Signal for Exploration [76.6341354269013]
強化学習における探索の効果的なアプローチは、最適な政策に対するエージェントの不確実性に依存することである。
本稿では,評価値のバイアスや時間的に矛盾する点を強調した。
本稿では,時間差誤差の分布の導出に依存する値関数の不確かさを推定する手法を提案する。
論文 参考訳(メタデータ) (2020-10-05T18:11:22Z) - Off-policy Policy Evaluation For Sequential Decisions Under Unobserved
Confounding [33.58862183373374]
観測不能条件下でのOPE手法のロバスト性を評価する。
また,OPE法に偏りが強い場合も少ないことが示唆された。
最悪ケース境界の計算に有効な損失最小化手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T05:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。